
Estimating Unobserved Networks from Heterogeneous
Characteristics with an Application to the Swing Riots∗

Kieran Marray1

1School of Business and Economics and Tinbergen Institute, Vrije Universiteit Amsterdam

Current version: July 2025

Abstract

Researchers often observe outcomes determined by economic networks, and characteristics
that determine if agents form links, but not the network itself. Here we present an estimator
for unobserved networks from panel data and characteristics that drive link formation. The
estimator recovers the network by decomposing the covariance matrix of outcomes, penalising
links more heavily the less likely they are given characteristics. We provide theoretical bounds
on estimation error, and a fast coordinate descent algorithm that makes estimation tractable
for large networks. As an application, we estimate patterns of coordinated uprisings during
the Swing Riots of 1830–1831 among parishes distributed across space. We find evidence of a
small core of coordinated unrest centred on known radical parishes. Exposure to coordinated
unrest reduces elite preference for franchise expansion.

Keywords— Networks, graphical lasso, threat of revolution
JEL Codes: C31, D72, D85

1 Introduction

Interactions between economic agents shape many important outcomes. Classmates affect grades in
school (Calvó-Armengol et al., 2009; Carrell et al., 2009; Jackson et al., 2022). Idiosyncratic shocks, such
as severe weather shocks from climate change, propagate through supply links between firms (Carvalho
et al., 2020; Barrot and Sauvagnat, 2016). Information spreads across villages through informal lending
networks (Banerjee et al., 2013). But, often these networks are either partially observed, or completely
unobserved (e.g see Chandrasekhar and Lewis, 2016; Griffith, 2022; Boucher and Houndetoungan, 2025,
for a review). To study these networks, econometricians have begun to develop methods to estimate the
unobserved links from panel data on outcomes generated by models of social interactions on the network
(Manresa, 2013; Lam and Souza, 2019; Battaglini et al., 2021; Lewbel et al., 2023; De Paula et al., 2024;
Griffith and Peng, 2024).

Simultaneously, there is a growing recognition of the importance of how social and economic networks
are formed for their structure (e.g see Jackson and Wolinsky, 1996; Bala and Goyal, 2003; Carrell et al.,
2013; Jackson et al., 2022; Jackson, 2025). Often individuals choose who to link to. Therefore things
like strategic choice of partners, homophily over characteristics, and spatial search and matching frictions
determine who is connected with whom in many observed networks (e.g see Currarini et al., 2009; Boucher,
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2015; Jackson et al., 2022; Arkolakis et al., 2023). Existing estimators that rely solely on outcomes do
not account for these effects of heterogeneous individual characteristics on network structure.

Here, we introduce an estimator for unobserved networks from that uses both the outcomes generated
from a process on the network and the characteristics of individuals that affect how they form links
between themselves to estimate the unobserved links. As standard, outcomes are assumed to be generated
from a canonical social interactions model. Individual outcomes depend on the weighted sum of others’
outcomes through the network (Battaglini et al., 2021). But, we account for network formation by adding
a hierarchical ‘spike-and-slab’ prior over possible links (Ročková and George, 2014; Gan et al., 2019). The
first stage models individuals forming links at certain rates depending on their pairwise characteristics.
As an example, consider a set of individuals in different villages located in space. Some villages are closer
to each other; others are further away from each other. The villagers may form links at different rates
with those in nearby villages than those in villages further away. The second stage is composed of a
mixture of Laplace distributions that serves to regularise estimated links.

To estimate the network, we construct the posterior distribution of links given outcomes and the
interaction rates of nodes with different characteristics, and take the maximum a-posteriori estimator.
This maximum a-posteriori estimator corresponds to the penalised maximum-likelihood estimator of the
canonical social interactions model in Battaglini et al. (2021). But, crucially, the penalisation rate varies
by link depending on the characteristics of the individuals and the interaction rates between individuals
with those characteristics. Links between types of agents with higher interaction rates are penalised
less heavily. Links between types of agents with lower interaction rates are penalised more heavily. In
our example, if villagers are more likely to interact with those in nearer-by villages, we would penalise
potential links to further away villages more heavily than closer-by villages. We further show that the
estimation problem is convex given a set of interaction rates. So, links are point identified given a set of
interaction rates.

Of course, researchers do not know these interaction rates ex-ante. So, we show how the researcher can
estimate both the network and these interaction rates simultaneously by solving a two-stage optimisation
problem (Gan et al., 2019). Given each set of interaction rates, the researcher picks the maximum a-
posteriori estimator for the links. To pick the interaction rates, the researcher minimises a Bayesian
Information criterion over the set of optimal links (Yuan and Lin, 2007). Under correct choice of the

tuning parameters, the estimated network has an optimal error rate of Op

(√
lnN
T

)
, where the constant

depends on the number of true links in the network. So, in cases where the network is sparse because of
the structure of underlying characteristics, the error will be lower. Furthermore, this error rate extends
to distributions with polynomial tails.

A benefit of our approach is that it turns the complex problem of sampling from the posterior into
a tractable two-stage optimisation problem. The inner optimisation problem – estimating the network
given interaction rates – involves maximising a non-linear objective function over N(N − 1) parameters.
This is costly as N becomes moderately large. So, we derive a novel coordinate descent algorithm to
similar to those in Friedman et al. (2007); Ročková and George (2014); Gan et al. (2019) that breaks
the nonlinear optimisation problem down into a series of regularised linear regression problems that we
can solve by soft-thresholding. Our algorithm allows us to tractably estimate large unobserved networks.
In simulations, one coordinate descent cycle over a network with 1000 nodes takes only 2.25 seconds.
Furthermore, we find that the estimator delivers relatively high precision and recall rates for links when
T << N , and estimates interaction rates close to true interaction rates.

We apply our method to estimate underlying coordination networks in the 1830− 1831 Swing Riots
in England, using geographical distance between parishes to predict coordination between labourers in
the parishes. The Swing Riots were a series of spontaneous uprisings by agricultural labourers who,
facing rapidly eroding standards of living during the expansion of capitalism into the English countryside
and growing unemployment from automation of traditional tasks, rose up to expropriate lost wages from
landlords and break machines that took their work (Hobsbawm and Rudé, 1973; Tilly, 1995; Holland,
2005). The uprisings, in combination with urban unrest and the ‘Days of May’, were instrumental to the
expansion of the franchise in the UK through the Great Reform Act by raising the spectre of an English
revolution (Aidt and Franck, 2015).

To separate out the effects networks of coordination from the well-documented slow spatial diffusion of
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rioting north-west from Kent (e.g see Charlesworth, 1979; Aidt et al., 2022), we decompose the covariance
of incidents of large-scale unrest (machine-breaking, wage riots, expropriation, prisoner rescues, and
attacks on law-enforcement) within weeks, after removing common time-invariant factors that contributed
to unrest (Caprettini and Voth, 2020). There is anecdotal evidence from the historical literature of
organisation of these larger scale incidents by groups of labourers combining strength across parishes
(Hobsbawm and Rudé, 1973).

We find sparse evidence of coordination between parishes, This supports the thesis of historians like
Hobsbawm and Rudé (1973); Tilly (1995); Holland (2005) that the riots were largely uncoordinated re-
sponses to common conditions. But, we do find some local link concentrated in the Berkshire, Wiltshire
border and focussed around parishes like Kintbury known as ”great centres (sic) of millitancy in 1830”
(Hobsbawm and Rudé, 1973). We find significantly more incidents of unrest in parishes that we estimate
to be connected to at least one other parish than those that are unconnected. Examaining their charac-
teristics, we see that connected parishes experienced enclosure at a higher rate, and have more exposure
to newspapers.

Finally, our results allow us to separate out the effects of exposure to coordinated and uncoordinated
rioting on support for the expansion of the franchise through the 1831 general election (widely considered
as a referendum on franchise expansion). The ‘threat of revolution’ theory posits that Western elites
agreed expand the franchise to lower orders to head off credible threats of revolutionary uprisings from
those lower orders (Acemoglu and Robinson, 2000, 2001; Aidt and Jensen, 2013). Aidt and Franck (2015)
examine this in the context of the Swing riots, and find that exposure to rioting increased vote share
for politicians that supported expanding the franchise. We replicate their results, now controlling for
exposure to coordinated rioting. We find that exposure to general unrest had a larger effect on the vote
for politicians supporting franchise expansion than reported in Aidt and Franck (2015). Furthermore,
we find a negative (but imprecisely estimated) effect of exposure to coordinated unrest on the vote share
of pro-reform candidates conditional on levels of general unrest. This is suggestive evidence of an elite
reaction against franchise expansion when exposed to the outcomes of labourers’ political coordination.

Our paper contributes to the growing literature on the econometrics of unobserved or partially ob-
served networks. An emerging literature on sampling and mis-specification in network models in econo-
metrics shows the issues an applied researcher can face not observing a full network (e.g see Chandrasekhar
and Lewis, 2016; Griffith and Peng, 2024; Boucher and Houndetoungan, 2025). Existing literature ap-
proaches the problem of estimating unobserved networks either using characteristics or outcomes gener-
ated by the network, and not both. One popular approach involves fitting a model of how economic actors
form links based on characteristics to observed network data (e.g the gender of high-school students, or
social status within villages). Researchers then imputes unobserved networks, or parts of this network,
based on the model (e.g Breza et al., 2020). Taking the other approach, De Paula et al. (2024), Rose
(2023), and Lewbel et al. (2023) estimate the matrix of reduced form coefficients in a system of linear
equations corresponding to outcomes from the network, and then decompose matrix of reduced form
coefficients to obtain an estimate for the network. Manresa (2013), Lam and Souza (2019) take similar
approaches, using a lasso to directly select which economic actors influence each other. Our approach is
closest to Battaglini et al. (2021) who set up a penalised maximum-likelihood estimator for a network
from the covariance matrix of observed outcomes. Griffith and Peng (2024) expand this approach to
incorporate the effect of common factors on outcomes. Our main contribution is to incorporate both in-
formation on individual characteristics and outcomes on links into the estimation problem in a way that
is computationally tractable for realistically-sized networks (similar to Hardy et al. (2024), Lubold et al.
(2023)). By using Empirical-Bayes methods to reduce a complex sampling problem to an optimisation
problem, we follow the nascent literature in ‘optimisation-conscious econometrics’ and shrinkage meth-
ods in econometrics (Fessler and Kasy, 2019; Hansen, 2016). We further build on the large literature on
graphical models in statistics and machine learning (Wainwright and Jordan, 2008; Janková and Van de
Geer, 2018; Gan et al., 2019). Similarly to these papers, we estimate the structure of interactions between
random variables by decomposing their covariance matrix. Particularly, our work extends that of Gan
et al. (2019), who uses introduces a Bayesian estimator of links in Markov random fields that leads to
unequal regularisation of links. Our coordinate-descent approach to solving the optimisation problem for
large N builds on the graphical lasso of Friedman et al. (2007).
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Finally, our paper relates to the literature in economics on history on the Swing riots and the impact of
uprisings on franchise expansions. Aidt and Franck (2015) are the first to link exposure to the Swing riots
to the passage of the Great Reform act, building on a large literature on the impact of threat of revolution
on franchise expansions (e.g see Acemoglu and Robinson, 2000, 2001; Conley and Temimi, 2001; Aidt
and Jensen, 2013). Caprettini and Voth (2020) link incidents of rioting to parish-level conditions. Our
specification of distance as a predictor of contagion of unrest between parishes builds on Aidt et al.
(2022), who study the slower diffusion of incidents of rioting across England over multiple weeks. Within
the historical literature, Hobsbawm and Rudé (1973); Charlesworth (1979); Tilly (1995); Holland (2005)
conduct detailed surveys of the causes, progress, and impact of the Swing riots.

1.1 Outline

First, in Section 2, we set up our econometric problem. Section 3, derives our estimator, its theoretical
properties, and describes the algorithm we use to implement the estimator. Finally, in Section 4 we apply
our estimator to the Swing Riots. All proofs are given in the appendix.

2 Setup

Consider a researcher who observes a set N = {1, ...N} of individuals across T time periods. The number
of individuals N is fixed such that N > T . The individuals are connected on a weighted, simple network
with adjacency matrix G. Individual outcomes yit depend on weighted connections G, covariates xit, and
idiosyncratic shocks ϵit through the data generating process (Battaglini et al., 2021)

yit =
∑
j

Gijyjt + xitβ + ϵit (1)

– a common model in the literature on spatial and network econometrics (e.g see De Paula, 2017).
The researcher observes some individual-level outcome {yit}i∈N ,t=1,...,T and covariates xit, but not

how much each individual on the network affects each other, G. The researcher wants to estimate G.
We assume that G is formed in a process that we can describe in three steps. First, nature draws

each individual i some position zi ∈ ZM . Without loss of generality, we let these be discrete categories.
Second, pairs of individuals form connections at rates that depend on their pairwise characteristics. Let
A denote a binary matrix of connections where

Gij ̸= 0 only if Aij = 1. (2)

Formally, A is one draw from a random graph generating process A(Z, η) with the vector of interaction
rates η ∈ [0, 1)M

2

η =
(
ηz1,z1 ηz1,z2 ... ηZM ,ZM

)
such that

Aij |(zi, zj) ∼ Bernoulli(ηzi,zj ). (3)

We assume that η is not known to the researcher ex-ante. Third, given that two individuals are
connected (Aij = 1), they interact with some time-invariant intensity Gij > 0.

This reduced-form network formation model is a plausible in many economic settings. For example,
we may models individuals in villages forming links at rates that depend on which village each is from
(Banerjee et al., 2013). We might model children in schools forming links at different rates depending on
whether they have the same or different genders (Currarini et al., 2009). Alternatively, firms from dif-
ferent municipalities may search for suppliers across space at different rates depending on their own and
the other municipality (Arkolakis et al., 2023). In the appendix, we show that this can be microfounded
as the equilibrium outcome of a game on a network with linear quadratic utilities and individual-specific
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consideration sets. If we consider the power set of possible ZM as communities, we can think of our net-
work formation model as a non-parametric approximation to a continuous underlying network formation
process (Airoldi et al., 2013).1

Our specification imposes several noteworthy restrictions on our data. Firstly, links on the network
do not change over time (similar to De Paula et al., 2024; Lewbel et al., 2023). This rules out endogenous
effects where individuals adjust links endogenously over time to respond to spillovers (e.g see König
et al., 2019). Second, all interactions have the same sign. Third, unlike De Paula et al. (2024) we do
not allow for a direct effect of covariates on neighbours’ outcomes through the network. The effect of
one individual’s covariates on others’ outcomes only comes through the effect on the individual’s own
outcomes. This assumption is appropriate for our empirical example in section 4. We leave deriving this
approach with covariates to further research.

We impose four following assumptions on this data generating process. To start with, we assume that
all non-zero entries are ‘large enough’.

Assumption 1. Minimum detectable entry size

min{Gij |Gij ̸= 0} > c

√
lnN

T

for some constant c > 0.

This assumption says that as the number of time periods gets smaller, or the number of individuals
gets larger, the smallest present link must get stronger. In practice, this tells us the size of the smallest
detectable link. As the number of possible links gets larger relative to time periods, it gets harder
to distinguish the presence of the link from noise. Second, as is standard in the spatial and network
econometric literature, the network must have a spectral radius less than 1 (Battaglini et al., 2021)

Assumption 2. Spectral radius – ρ(G) < 1.

Otherwise, outcomes are not well defined. Third, we assume for simplicity that any covariates are
deterministic as in Battaglini et al. (2021)

Assumption 3. Deterministic covariates – xit are uniformly-bounded, deterministic variables for all i.

Finally, as standard in the literature on graphical models (e.g see Wainwright and Jordan, 2008;
Janková and Van de Geer, 2018; Gan et al., 2019) we assume that errors are independently and identically
distributed from a Normal distribution.

Assumption 4. Distribution of errors – ϵt ∼ N(0, σ2I) ∀t.

This allows us to write down our likelihood function for links given. In practice, we can relax this
assumption. Indeed, our theoretical guarantees on estimation accuracy applies to general distributions
with exponential and polynomial tails. We discuss this more when we discuss the theoretical properties
of the estimator.

For estimation, we will work with the component of yit that varies orthogonally to xit. Stacking each
individual’s outcomes yit into T × 1 vector yt, we project out the effect of covariates

(I − Px)yt.

and the resulting outcomes into the T × N matrix Y . Under assumption 4, we can describe these
outcomes as being normally distributed

Y ∼ N(0, σ2((I −G)(I −G)′)−1). (4)

1Instead, we could let the network formation process be more general by instead parameterising η as a continuous
function of underlying characteristics Z. An example of this might be exponential decay of interaction probabilities
in distance.
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The unobserved networks enters through the covariance of outcomes. Under assumption 2, we can
rewrite G in invertible the expansion

(I −G)−1 =

∞∑
k=0

Gk

– the matrix encoding all paths of any given length between any two individuals on the network. So
the covariance of two individuals’ outcomes depends on the variance of shocks and the number of paths
of any length between them.2

3 Estimation

Consider the problem of jointly estimating links G, the variance of shocks σ2 and interaction rates η from
the posterior distribution of G, σ2 given outcomes Y , characteristics Z and η. As data, we construct the
sample covariance matrix of outcomes across individuals S such that

Sij =
1

T

T∑
t=1

YitYjt.

Our main result is that we can formulate this estimation problem as a two-stage optimisation problem,
where the inner stage is convex conditional on an estimate of the interaction rates. This allows us to
bound the error of the estimated network from the true network, and to derive an algorithm to tractably
estimate moderately-sized networks.

3.1 Objective function

To construct the posterior distribution of links and the variance of shocks given interaction rates and
our data, we need to formulate a likelihood for the network and variance given outcomes, and priors for
both given characteristics and interaction rates. From the distribution of outcomes 4, it follows that the
log-likelihood of outcomes Y given the network of connections G and variance σ2 is

l(G, σ2) = log det
((I −G)(I −G)′

σ2

)
− trace

(
S
(I −G)(I −G)′

σ2

)
. (5)

Given our network generating process, we can model the off-diagonal elements of the adjacency matrix
using a ‘spike-and-slab’ prior (Ročková and George, 2018; Gan et al., 2019).

π(Gij) = p(Aij = 1|zi, zj)
1

2ν1
e

−|Gij |
ν1 + p(Aij = 0|zi, zj)

1

2ν0
e

−|Gij |
ν0 (6)

=
ηzi,zj
2ν1

e
−|Gij |

ν1 +
1− ηzi,zj

2ν0
e

−|Gij |
ν0 .

2An alternative way of stating this is that our outcomes can be described by a Markov random field parameterised
by the precision matrix

Θ =
1

σ2
(I −G)(I −G)′

=
1

σ2
(I − 2G+GG′)

that encodes the conditional independence structure between the series of individual level outcomes Y (Janková
and Van de Geer, 2018). Two individuals’ outcomes are independent of each other conditional on all other outcomes
if there are no links of up length two between them.
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More intuitively, we can express this as the hierarchical prior

π(Gij) =

{
p(Gij |Aij = 0) ∼ Laplace(0, ν0)

p(Gij |Aij = 1) ∼ Laplace(0, ν1)

Aij |zi, zj = Bernoulli(ηzi,zj ).

Figure 1: Example ‘spike-and-slab’ prior

Notes: Example for parameters v0 = 1/100, v1 = 1/5.

The first level of the prior models the presence of links between individuals at different rates ηzi,zj
depending on individual characteristics zi, zj . The second level then models the entries of the adjacency
matrix given the presence or not of a link. Here, we use a mixture of Laplace priors – one prior for
individuals that are connected, and one for those that are not.3 Figure 1. plots an example of these
distributions. In our case, the penalty will force links that explain little of the covariance in outcomes
to zero. In addition to η, which we will estimate, our spike-and-slab prior is parameterised by the scale
parameters for the two Laplace distributions ν0, ν1. Setting ν1 > ν0 means that there is more likely to
be a non-zero entry of the adjacency matrix if we predict that there is a link between individuals than if
we do predict that there is a link between individuals. As a prior for σ2, we use the uniform prior

f(σ2) = U(0, σ2
max) (7)

where σ2
max is bounded below the observed variance of the data.

Given our priors and likelihood, we can jointly estimate G and η from the posterior distribution by
a form of empirical Bayes (Gan et al., 2019; Fessler and Kasy, 2019). First, consider estimation of G, σ2

for fixed η∗. Using Eqs. 5, 6, and 7, we can write the logarithm of the posterior distribution as

L(G, σ2|Y, Z, η∗) = lnπ(G|Y,Z, η∗),

= l(G, σ2) +
∑
i,j

lnπ(Gij |zi, zj , η∗) + const,

= log det
((I −G)(I −G)′

σ2

)
− trace

(
S
(I −G)(I −G)′

σ2

)
(8)

+
∑
i,j

ln
(η∗zi,zj

2ν1
e
−

|Gij |
ν1 +

1− η∗zi,zj
2ν0

e
−

|Gij |
ν0

)
+ const, .

3Maximum a-posteriori estimation with a Laplace prior is equivalent to the standard l1 penalised maximum
likelihood estimator or graphical lasso algorithm (Gan et al., 2019; Friedman et al., 2007). Including some form of
penalty is necessary for identification of our subsequent estimator in the case where N > T – see Battaglini et al.
(2021).
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We take the maximum a-posteriori estimators Ĝ(η∗), σ2(η∗). Dropping the constant, the estimates
maximise the objective function

L(G, σ2|Y,Z, η∗) = log det
((I −G)(I −G)′

σ2

)
− trace

(
S
(I −G)(I −G)′

σ2

)
+
∑
i,j

ln
(η∗Zi,Zj

2ν1
e
−

|Gij |
ν1 +

1− η∗Zi,Zj

2ν0
e
−

|Gij |
ν0

)
This is a natural estimator for G, σ2 as it corresponds to the usual penalised maximum-likelihood

estimator (e.g see Friedman et al., 2007; Battaglini et al., 2021) except, instead of imposing a constant
penalty on the occurrence of each link, it more heavily penalises links that less likely to occur based
individual characteristics. To see this consider the subgradient of our penalty term above with respect
to a link Gij

∂Gij lnπ(Gij |zi, zj , η∗) = p(Aij = 1|η∗zi,zj )
1

ν1
+ (1− p(Aij = 1|η∗zi,zj ))

1

ν0
.

The subgradient of the penalisation term is the average of two penalisation terms weighted by the
conditional probabilities a link is present or not given characteristics and estimated interaction rates
(Gan et al., 2019). Through setting ν1 > ν0, we penalise links more between individuals that are less
likely connected based on characteristics (more heavily weighting the ‘spike’ of the mixture distribution),
and less between those that we think are more likely to be present based in characteristics (more heavily
weighting the ‘slab’ of the mixture distribution).

In practice, we need to impose our assumptions on the spectral radius of the adjacency matrix, and
that there are no self loops. Adding these constraints alongside Eq. 8 gives the constrained optimisation
problem

Ĝ(η), σ̂2(η) = max
Gij>0,σ2∈[0,σ2

max]
log det

((I −G)(I −G)′

σ2

)
− trace

(
S
(I −G)(I −G)′

σ2

)
+
∑
i,j

ln
(η∗Zi,Zj

2ν1
e
−

|Gij |
ν1 +

1− η∗Zi,Zj

2ν0
e
−

|Gij |
ν0

)
(9)

s.t ρ(G) < 1, Gii = 0 ∀i

Given the inner problem 9, we can then solve for the interaction rates η given the estimates of
Ĝ(η), σ2(η). Following Gan et al. (2019), we pick η∗ to minimise the Bayesian Information Criterion for
high-dimensional covariance matrix estimators of Yuan and Lin (2007)

η∗ = min
η
− n

(
trace

(
S
(I − Ĝ(η))(I − Ĝ(η))′

σ̂2(η)

)
− log det

((I − Ĝ(η))(I − Ĝ(η))′

σ̂2(η)

))
+ ln (n)× |{Ĝij(η) : Ĝij(η) ̸= 0}|.

3.2 Theoretical properties

First, we note that the inner optimisation problem Eq. 9 is convex.

Proposition 1. Assume that ν1 > ν0 and ηzi,zj ∈ [0, 1) ∀i, j. Then, the optimisation problem Eq. 9 is
convex with respect to Gij ∀i ̸= j.

This tells us that, for a fixed set of interaction rates η, the adjacency matrix of the network G is
identified.

Next, we want to bound the distance of the estimate from the true network. Let Ĝ denote the solution
to the inner optimisation problem. We can show that the estimated network is close to the true network.
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Theorem 1. Define a = ||A||∞, and denote MB0 = |||B0|||∞. Make assumptions 1, 2, 3 plus the
assumptions that

1

Tν0
> C4

√
lnN

T
,

1

Tν1
> C3

√
lnN

T
, and

√
T ≥ Ca

√
N

where C = 2(2C1 + C2)MΓ0max(3MΣ0 , 3MΓ0M
3
Σ0
).

If ϵ is from a distribution with exponential tails i.e there exist some γ, c1 > 0, N ≤ c1T
γ , and for

some δ0 < 0

E|ϵi|4γ+4+δ0≤ K ∀i = 1, ..., N,

then

||Ĝ−G||F≤ 2(2C1 + C3)MΓ0

√
a lnN

T
.

where
C1 = a−1(2 + τ0 + a−1K2)

with probability greater than 1− 2N−τ0 .
If we instead assume that ϵ is from a distribution with polynomial tails i.e there exist some γ, c1 >

0, N ≤ c1T
γ , and for some δ0 < 0

E|ϵi|4γ+4+δ0≤ K ∀i = 1, ..., N,

then

||Ĝ−G||F≤ 2(2C1 + C3)MΓ0

√
a lnN

T
.

where

C1 =
√
(Θmax + 1)(4 + τ0)

with probability greater than 1−O(T− δ0
8 +N− τ0

2 ).

Note that the necessary sample size depends on the maximum row sum of A, which itself depends
on the characteristics Z. This theorem tells us that if number of possible connections for nodes in the
network is sparse due to underlying characteristics – the rate ηij = 0 for most i, j – then we can detect
networks with a very small T relative to N . As the set of possible links gets larger and larger, and
interaction rates get higher, we need larger T to detect the true network for a given N .

3.3 Implementation

To implement the estimator, we need to solve the constrained optimisation problem Eq. 9. This type of
problem is hard to solve in practice (Ročková and George, 2014; Gan et al., 2019). So, here we derive
an EM algorithm to efficiently solve 9 for large N . Recall that we can write the log of the prior (our
regularisation term in 9) in terms of the matrix of connections A as∑

ij

ln
(
p(Aij = 1|zi, zj)

1

2ν1
e

−|Gij |
ν1 + p(Aij = 0|zi, zj)

1

2ν0
e

−|Gij |
ν0

)
.

To solve Eq. 9, we sample A as a latent variable alongside G, fixing σ2 (Ročková and George, 2014).
Then, we can solve for estimates of G maximising the expected likelihood given A (Gan et al., 2019).
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Finally, we can solve for σ2 by maximising the likelihood over the resulting estimates. First, note that
we can rewrite the joint log-posterior distribution Eq. 8 as

L(G, σ2, A|Y,Z, η) = l(G, σ2) +
∑
ij

ln (P (Aij |η, Zi, Zj)p(Gij |Aij)) + const.

Let P denote the matrix such that

Pij = E(Aij)

= p(Aij = 1|zi, zj).

In the E step, we can sample P given estimated Gk as in Gan et al. (2019)

ln
Pij

1− Pij
= ln

ν0
ν1

+ ln
ηzi,zj

1− ηzi,zj
−
|Gk

ij |
ν1

+
|Gk

ij |
ν0

. (10)

Then, we can write the expectation of log-posterior over A as

Q(G|Gk) = log det
((I −G)(I −G)′

σ2

)
− trace

(
S
(I −G)(I −G)′

σ2

)
+
∑
i,j

Pij(− ln 2ν1 −
|Gij |
ν1

+ ln ηZi,Zj )

+
∑
i,j

(1− Pij)(− ln 2ν0 −
|Gij |
ν0

+ ln (1− ηZi,Zj )).

Maximising this gives us our estimate Gk+1. To solve for Ĝ, Â, we can iterate until convergence.
Maximising the Q() function over for a complete (simple) network Gk involves simultaneously esti-

mating N(N−1) parameters. As this scales quadratically in N , this becomes difficult to directly optimise
for even small N . As a solution, we propose a network lasso algorithm inspired by the graphical lasso of
(Friedman et al., 2007). This allows us to break this hard non-linear optimisation problem into a series
of lasso problems that we can solve iteratively using a soft-thresholding algorithm. The soft-thresholding
algorithm is relatively fast, allowing us to solve relatively large problems with thousands of individuals.

Taking subdifferentials of our Q() function with respect to G gives the first-order condition

− 1

σ2
S(I −G) + (I −G)−1 − Z = 0,

where the matrix Z encodes the subdifferentials of the penalty function with respect to each Gij

Zij

{
=∈ [−( 1

ν1
Pij +

1
ν0
(1− Pij)), (

1
ν1
Pij +

1
ν0
(1− Pij))] if Gij = 0

= ( 1
ν1
Pij +

1
ν0
(1− Pij)) if Gij > 0.

for i ̸= j. Rearranging, we have

S − σ2(I − γG)−1 − SG− σ2Z = 0.

Consider the i, jth entry of this matrix condition. We have

Sij − σ2(I −G)−1
ij − SiiGij −

∑
k ̸=j

Si,kGk,j − σ2Zij = 0.

– which we recognise as a Lasso problem (Tibshirani, 1996). Rearranging for Gij gives

Gij =
1

Sii
(Sij −

∑
k ̸=j

Si,kGk,j − σ2(I −G)−1
ij − σ2Zij).
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Therefore we can solve for Gij column-wise using an iterative soft-thresholding algorithm (Friedman
et al., 2010). Denote

ρij = Sij −
∑
k ̸=j

Si,kGk,j − σ2(I −G)−1
ij .

The updating rule for each Gij is

Gij =

{
ρij−σ2Zij

Sii
if ρij > Zij ,

0 if ρij ≤ Zij .

An additional complication is updating the inverse (I − G)−1 after estimating each column, which
would be computationally expensive. However, we can use that for a rank-one update to a matrix that we
can write as the outer product of two vectors uv′, the inverse is computable as (Sherman and Morrison,
1949)

((I −G) + uv′)−1 = (I −G)−1 − (I −G)−1uv′(I −G)−1

1 + v′(I −G)−1u
.

Writing

u = −(Gk
12 −Gk−1

12 )

v = e2 the unit basis vector,

we can write each new column estimate as a rank-one update to I−G, uv′, and apply this rule within
our algorithm.

The full algorithm we use to solve the inner optimisation problem is given in Alg. ??. To test the
speed of our algorithm, we time 100 single loops with a moderately sized network of N = 1000 (optimising
over 999, 000 variables). The mean execution time is 2.55 seconds.

Using the results in Tseng (2001), we can show that the result of this algorithm converges to the true
maximiser of the inner optimisation problem

Proposition 2. Make assumptions 1 and 2. Let Ĝk denote the k-th estimate from algorithm ?? and G∗

denote the maximiser of the inner optimisation problem Eq. 9 fixing η, σ2. As k →∞, Ĝk → G∗.

To solve for σ2, we simply maximise the likelihood over the results of this algorithm. Having solved the
inner optimisation problem fixing η, we have to determine the interaction rates η plus the regularisation
parameters ν1, ν0. To estimate η, we minimise the BIC over the maximum a-posteriori estimates of G
given η, ν0, ν1. Unfortunately, we have no theoretical guarantees that our outer problem is convex with a
unique global minimum.4. Therefore, we recommend estimating η, ν0, ν1 by a form of global optimisation
enforcing that ν1 > 1. In practice, we apply a local grid search strategy to sweep the parameter space.
This works well in practice for low-dimensional η. Further research could explore more efficient strategies
when the dimension of η becomes larger.

3.4 Simulations

In addition to our theoretical guarantees, we assess the finite sample performance of our estimates in
simulation. As our unobserved networks, we simulate the interaction of individuals across villages. Nodes
are partitioned into M blocks Z1, ..., ZM (villages). The latent network of interations A is a drawn
randomly such that nodes form links at a certain rate within blocks, and a certain rate between blocks.

Aij |Zi = Zj ∼ Bernoulli(η1),

Aij |Zi ̸= Zj ∼ Bernoulli(η2).

Given a sampled A, we set interaction intensities by row-normalising the matrix of connections

4Indeed, in simulations we can generate cases where there are multiple local minima.
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Algorithm 1 Network lasso

1: procedure Block Coordinate Descent(S,G0, σ
2, ν0, ν1, δ)

2: G← G0

3: Λ = (I −G0)
−1

4: while ||Gk −Gk−1||F≥ δ do
5: Gk ← Gk−1.
6: for i, j ∈ 1, ..., N do

7: Pij =
(
1 + ν1

ν0
e
−

|Gk
ij |

ν0
+

|Gk
ij |

ν1
1−ηZi,Zj

ηZi,Zj

)−1

8: end for
9: for i ∈ 1, ..., N do
10: v = ei
11: for j ∈ 1, ..., N do
12: Zij = Pij

1
ν1

+ (1− Pij)
1
ν0

13: ρij = Sij −
∑

; ̸=j Si,lG
k
l,j − σ2Λij.

14: Gk
ij =

{
0 if ρij ≤ σ2Zij,
ρij−σ2Zij

Sii
if ρij > σ2Zij.

15: end for
16: u = −(Gk

:,j −Gk−1
:,j )

17: Λ = Λ− Λuv′Λ
1+v′Λu

.
18: end for
19: i← i+ 1
20: end while
21: Return Gk.
22: end procedure

Algorithm 2 Full estimation algorithm

1: procedure Grid search(H,Σ, G0, S, ν0, ν1, δ)
2: for η ∈ H do
3: Ĝ(η), σ̂2(η) = argmaxσ2∈Σ{L(Network Lasso(η,G0, S, δ), σ

2)}
4:

BIC(η) = −n
(
trace

(
S
(I −G∗(η))(I −G∗(η))′

1

)
+ log det

((I −G∗(η))(I −G∗(η))′

1

))
+ ln (n)× |{G∗

ij(η) : G
∗
ij(η) ̸= 0}|

5: end for
6: η̂ = argminη∈H{BIC(η)}
7: Ĝ, σ̂2 = Ĝ(η̂), σ̂2(η̂).
8: end procedure
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Gij =
Aij∑
j Aij

to generate the network of interaction intensities G. Given a sampled G, we then simulate outcomes
from the model

Yit = (I −G)−1ϵit

for t = {1, ..., T} with ϵit ∼ i.i.d N(0, 1) for ease.5 We set T < N in each case, and vary the ratio
N
T ∈ {2, 3, 6, 12}. To estimate η, we use a local grid search.

We consider four different measures of the quality of our estimates

1. Precision – the total number of true links detected divided by the total number of estimated links
on the network

Precision =

∑
ij 1(Ĝij > 0)1(Gij > 0)∑

ij 1(Ĝij > 0)

2. Recall – the total number of true links detected divided by the total number of true links on the
network

Recall =

∑
ij 1(Ĝij > 0)1(Gij > 0)∑

ij 1(Gij > 0)

3. The distance between the estimated network and true network

||Ĝ−G||F .

4. The estimates (η̂1, η̂2).

Outcomes are computed by averaging over 100 draws of G, {ϵit}i,t.

Table 1: Performance of estimator on simulated networks

N T Precision Recall Distance η̂1 η̂2
300 150 0.75 0.90 7.07 0.28 0.05
300 100 0.71 0.850 7.40 0.32 0.05
300 50 0.63 0.76 8.02 0.28 0.041
300 25 0.45 0.63 8.93 0.28 0.065

Notes: Results averaged over 100 simulated networks and errors. ‘Distance ’is Frobenius norm of the difference
between the true and estimated network. The number of blocks is kept constant at N

10 .

Precision and recall are high when T is relatively high compared to N . As T falls, performance falls
as well. However with T very small relative to N , recall remains relatively high. In all cases, distance
between estimated and true matrices are fairly low. Estimates of interaction rates also remain reasonably
close to true interaction rates.

4 Application: coordinated unrest in the Swing riots

As an application, we estimate patterns of coordination between labourers in different parishes in England
during the Swing riots of 1830-1831. We then study the effects of elite exposure to coordinated and
uncoordinated uprisings on votes to expand the electoral franchise in the United Kingdom.

5We get results that are quantitatively similar when jointly estimating σ2.
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Figure 2: Swing incidents in England 1830–31

(a) Incidents by day, June 1830–February
1831

(b) Distribution of incidents by parish –
size/colour denotes number of riots

4.1 The Swing riots of 1830–1831

The Swing Riots were series of uprisings by landless labourers that spread mainly through the agricultural
south-east of England between August 1830 and February 1831. They were the largest of any such risings
in the 19th century England (Tilly, 1995). The English countryside at this times was mainly comprised of
middle-sized and larger farms. A small fraction of landowners owned these farms, and employed a large
mass of landless agricultural labourers in seasonal work. Changes in the economic system in England
over the late 18th and early 19th centuries had eroded the traditional life and bonds of these country
workers. Cottage gardens and traditional common lands were enclosed, removing the little land the
labourers possessed. Employment contracts became more precarious. Local systems of poor relief, the
last resort of those unable to get sufficient work to feed their families, began to break down (Hobsbawm
and Rudé, 1973).

The spark for unrest is generally seen to be the increasing adoption of machines to replace seasonal
labourers, combined with bad harvests in preceding years Hobsbawm and Rudé (1973); Holland (2005).
Facing immiseration, desperate agricultural labourers began to rise up to demand liveable wages and
employment. The risings started in Kent on June 28th 1830. Barns were burnt, threshing machines
smashed, and labourers expropriated earnings that they had lost or felt entitled to from farm operators
and landowners. Acts were often preceded by letters threatening action signed by a mysterious ”Captain
Swing”, either named for the leader of the harvest gangs or the flails traditionally used in threshing
(Holland, 2005).

Authorities and local militias were in general unable to prevent incidents or effectively suppress
the labourers until after serious unrest (Hobsbawm and Rudé, 1973; Holland, 2005). Uprisings scared
elites, raising the spectre of an English revolution similar to the contemporaneous revolutions France and
Belgium. There is evidence that the riots led to a subsequent expansion of the franchise due to a fear of
revolution (Aidt and Franck, 2015).

News of uprisings diffused across through the country through roads and local communication net-
works. This occurred relatively slowly, starting in Kent and spreading North and East (see Charlesworth,
1979; Aidt et al., 2022). Once rioting had begun in an area, in most cases it took the form of sporadic
incendarism and machine breaking. But, in certain areas, there s evidence that local labourers coordi-
nated actions across parishes to jointly agitate to improve their conditions. Labourers would organise
wage-meetings where they would demand higher wages, and would unite and tour local landowners and
farms to expropriate them. For example Hobsbawm and Rudé (1973) report that that, after the men of
Hungerford and Kintbury in Berkshire were able to extract wage concessions from local justices of the
peace
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“Other villages, whose inhabitants had no doubt heard of the outcome of the Hungerford confronta-
tion, sent a deputation that night to join the Kintbury labourers to invite them to join in combined
operations. So the next day the riots continued ...” (Hobsbawm and Rudé, 1973, pg. 138)

Here, we focus on these links between parishes leading to coordinated uprisings as opposed to this
longer process of spatial diffusion (already well documented by Charlesworth, 1979; Aidt et al., 2022).
We do this by looking at the covariance in Swing incidents over the short term (within the week) as
opposed to medium or longer term (over weeks, as in Aidt et al., 2022).

4.2 Data

Data on incidents associated with the Swing riots comes from Holland (2005). Our dataset contains the
number of incidents associated with the Swing riots in each of 8597 parishes in England over 40 weeks
(recorded on 98 individual days) between 28th of June 1830 and 3rd of April 1831, plus the latitude and
longitude of each parish computed from historic maps by Aidt et al. (2022). We distinguish between
incidents involving large mobs of labourers (wage riots, ‘robbery’, machine-breaking, prisoner rescues,
and attacks on local authority figures) and other types of incidents (mainly incendarism, plus things
like livestock maiming) (Tilly, 1995; Aidt et al., 2022). Only a small proportion (619) of these parishes
experienced at least one large incident during the unrest.

Distances between each parish come from historic latitudes and longitudes by the Haversine formula.
To estimate coordination between parishes, we construct the covariance of ‘large’ incidents of unrest

within each calendar week across parishes that experience at least one incident of ‘large’ unrest. Only
a small proportion (619) of these parishes experienced at least one large incident during the unrest. As
covariates that determine how labourers make connections between parishes, we use we use whether the
parishes are within 10km of each other as in (Aidt et al., 2022).6 The motivation for this specification
documented incidents of radical cores of labourers travelling by foot between multiple parishes to gather
others to press demands for wages on local elites or break machines documented in Hobsbawm and Rudé
(1973); Holland (2005). This type of unrest is different from the sporadic incendarism carried out by
small groups of anonymous labourers. Apparent coordination may come from spatial correlation of local
conditions that are shown to influence the likelihood of uprisings in parishes (Caprettini and Voth, 2020).
So, we demean incidents by parish before estimating the network. After experimentation, we use tuning
parameters ν0 =

1
30 , ν1 =

1
0.1 .

Figure 3: Swing incidents in England 1830–31

(a) ‘Large’ incidents, Southeast of England (b) Estimated coordination patterns

6Distances between each parish come from the historic latitudes and longitudes reported in Aidt et al. (2022)
by the Haversine formula.

15



4.3 Results

Figure 2 plots our estimated network. The estimated network is very sparse. We only detect 24 non-zero
links between 25 distinct parishes. Estimated interaction rates are very small – at η = 0.1 for labourers
within 10km – and the estimated variance of shocks is σ̂2 = 0.09 (compared to variance of outcomes of
0.189). This evidence suggests that coordination between parishes did not play a large role in the overall
pattern of rioting across England. This result is in line with the historical literature, which emphasises
a lack of cross-country coordination between labourers compared to later trade-union movements in
England Hobsbawm and Rudé (1973).

The pattern of coordination we find differs across the counties affected by the Swing Riots. We
only find evidence of local diffusion within 8 out of the 39 historic counties: Berkshire, Buckinghamshire,
Dorset, Hampshire, Kent, Northamptonshire, Suffolk, and Wiltshire. But, these include five out of the six
counties with the most intense Swing activity – Kent (441 incidents), Norfolk (301 incidents), Wiltshire
(259 incidents), Hampshire (255 incidents), and Berkshire (169 incidents).7 Where labourers appear to
coordinate, we see that parishes with many large incidents are central within local interaction networks.
The most connected parish is Kintbury in Berkshire, described by Hobsbawm and Rudé (1973), who
detail of strong coordinated actions within Berkshire focussed on the men of Kintbury, as ”a great centre
of militancy in 1830”.

Matching back to characteristics of parishes detailed in Caprettini and Voth (2020); Aidt et al. (2022)
allows us to compute some descriptive evidence about these connected parishes compared to other parishes
that experienced at least one Swing incident. Results are given in Tables 2 and 3.

Table 2: Difference in Swing incidents by estimated coordination

Number of incidents

Coordinated 5.31
(1.06)

Intercept Yes

Observations 969
R2 0.0222

Notes: Standard errors in parentheses are heteroskedasticity-robust standard errors computed using the HC3
estimator of MacKinnon and White (1985).

We find a strong positive relationship between the number of (both ‘large’ and ‘small’) incidents and
coordination. Looking at characteristics that might influence coordination, we find that those where
we estimate labourers coordinated with others are more likely to have had common land enclosed and
have greater access to newspapers than parishes that experienced an uprising but did not coordinate
action. Interestingly, we find no difference in the adoption of threshing machines, or access to markets,
suggesting some difference in the causes of general levels unrest, spatial diffusion of information of unrest,
and coordination (Caprettini and Voth, 2020; Aidt et al., 2022).

4.4 Local networks and threat of revolution

Finally, we use our results to separate out the effect on local elites of being exposed to coordinated
or uncoordinated uprisings. To test if there is a different effect, we replicate the analysis in Aidt and
Franck (2015) looking at the effect of the number of nearby Swing incidents on the vote share for the
Whigs in the 1831 election. But, we also control for a dummy variable that encodes whether we find
a parish that coordinated with others within at least 10km of the centroid of a constituency. Those
13 constituencies are not just exposed to general unrest, but to coordinated unrest. To address any

7The missing county is Sussex with (215 incidents).
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Table 3: Coordination by parish-level covariates

Coordinate

Enclosure 0.0212 0.0624
(0.0118) (0.0347)

Market within 10km 0.0011 −0.0258
(0.0157) (0.0298)

Coach stop within 10km 0.0122 0.0437
(0.0109) (0.0225)

Newspaper within 10km 0.0319 0.0974
(0.0214) (0.0760)

Distance to nearest newspaper 0.0003 0.0052
(0.0006) (0.00306)

Threshing machine adoption 0.0092 −0.0296
(0.0223) (0.0195)

Demographic controls No Yes
Intercept Yes Yes

Observations 969 969
R2 0.0107 0.107

Notes: Standard errors in parentheses are heteroskedasticity-robust standard errors computed using the HC3
estimator of MacKinnon and White (1985).

concerns about endogeneity of the number of nearby Swing incidents, we replicate both the regular and
instrumental variables estimators, using their instrument of distance to the starting point of the first riot
in Kent.

Table 4 compares the baseline and preferred specifications in Aidt and Franck (2015) to ones also
accounting for the effect of coordination. When we account for the exposure of elites to coordinated action,
we find a larger effect of exposure to rioting on vote share for the Whigs (0.596 per riot as opposed to
0.439 in the main ordinary least-squares specification, 3.19 per riot as opposed to 2.53 per riot in the
instrumental variables specification). The change is explained by a large (imprecisely estimated in the
ordinary least-squares specifications) negative effect of being exposed to coordinated rioting on vote share
for the Whigs. In the preferred specification of Aidt and Franck (2015), the vote share for the Whigs is
on average 16.2% lower in constituencies exposed to coordinated rioting compared to those constituencies
with an equivalent amount of uncoordinated rioting. When instrumenting, this effect gets much larger
and more precisely estimated. Alongside the direct effect of general revolution, this is suggestive evidence
of a negative reaction of elites to experiencing political action and demands of labourers first hand.
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Table 4: Exposure to coordinated uprisings and 1831 election results

Whig share 1831 (%)

OLS estimates IV estimates
(1) (2) (3) (4) (5) (6)

Riots within 10km 0.569 0.837 0.439 0.596 2.53 3.19
(0.268) (0.219) (0.192) (0.185) (0.825) (1.03)

Coordination within 10km −27.8 −16.2 −82.8
(15.4) (12.5) (29.1)

Whig share 1826 0.380 0.380 0.143 0.196
(0.078) (0.077) (0.223) (0.218)

Reform support 1830 12.6 12.1 13.5 10.6
(5.36) (5.22) (6.15) (6.07)

County constituency 31.6 31.7 40.2 38.2
(4.97) (5.04) (8.80) (8.72)

University constituency −61.8 −63.2 −56.3 −52.1
(20.3) (21.2) (13.1) (13.1)

Patronage index −15.3 −15.2 −9.06 −8.04
(3.67) (3.67) (4.64) (4.81)

Declining economy −10.3 −9.60 −12.8 −16.3
(6.15) (6.23) (6.76) (6.94)

Spatial controls No No No No Yes Yes
Intercept Yes Yes Yes Yes Yes Yes

Observations 244 244 244 244 244 244
R2 0.0253 0.0393 0.467 0.472 0.491 0.492

Notes: Controls included to match preferred specifications in Aidt and Franck (2015). In the final two columns,
the number of riots within 10km is instrumented by distance to Sevenoaks. For details, see Aidt and Franck
(2015). Standard errors in parentheses are heteroskedasticity-robust standard errors computed using the HC3
estimator of MacKinnon and White (1985).

5 Conclusion

Here, we introduce an estimator for unobserved networks from panel data in a canonical social interactions
model that also includes the effect of covariates on network formation. Covariates lead to unequal
penalisation across links, leading to more links where covariates suggest individuals are more likely to
interact and fewer links where covariates suggest individuals are less likely to interact. We apply it to
estimate patterns of coordination in the Swing riots of 1830–1831. We evidence of small patterns of
local coordination, and suggestive evidence that this affected support for the subsequent expansion of
the franchise in the United Kingdom. Our specification excludes direct effects of covariates on others’
outcomes through the network, and changes in networks over time (as in De Paula et al., 2024). Further
econometric work could extend the estimator to this type of setting.
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Appendix

A1 Example microfoundation

Our data-generating process corresponds to equilibrium outcomes of a game on a network with linear-
quadratic utilities and individual-specific consideration sets determined by characteristics (Abaluck and
Adams-Prassl, 2021).

Imagine each of i = 1, ..., N individuals on a weighted network Gij who play an action yi ∈ R+. An
individual’s payoffs depend on their own action and the actions of others through the linear-quadratic
utility function

ui = (βxi + ϵi)yi +
∑
j

γijaijyiyj −
1

2
y2i .

There are T +1 periods. In the first period, nature draws a vector-valued position Zi in some vector
space RM

+ for each individual i, covariates xit, and time-varying shocks to marginal benefits ϵit. Then,
each individual forms links with the other at rates ηZi,Zj with interaction intensities γij . In the subsequent
periods, individuals adjust their actions to maximise their payoffs for the fixed network G. The first-order
conditions of this game are

(βxit + ϵit) + λ
∑
j

γijaijyj − yi = 0

Rearranging

y∗i = (βxi + ϵi) + λ
∑
j

γijaijy
∗
j .

Stacking this into matrix form and inverting gives

y∗ = (I −G)−1(Xβ + ϵ)

where Gij = γijAij encodes the intensity of interactions between each individual.

A2 Proofs

We start with the following lemma

Lemma 2.
d log det(XX ′)

dX
=

d log det(X ′X)

dX

By determinant rules

det(XX ′) = det(X) det(X ′)

= det(X ′) det(X)

= det(X ′X).

as det(A) is a constant. Therefore

d log det(XX ′)

dX
=

d log det(X ′X)

dX
.
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A2.1 Proposition 1

Proof. Our objective function (fixing σ2 = 1 without loss of generality) is

l(G) = log det
((I − γG)(I − γG)′

σ2

)
− trace

(
S
(I − γG)(I − γG)′

σ2

)
+
∑
i,j

ln
(η∗Zi,Zj

2ν1
e
−

|Gij |
ν1 +

1− η∗Zi,Zj

2ν0
e
−

|Gij |
ν0

)
.

To show that this is convex, we inspect the second-order subgradients of each term. The second-order
subgradient of the first term is

2I ⊗ S + 2(I −G)−1 ⊗ (I −G)−1.

By construction, S ≻ 0, and G ≻ 0. Considering the Neumann series expansion

(I −G)−1 =
∞∑
k=0

GK

as ρ(G) < 1. So, G ≻ 0 =⇒ (I −G)−1 ≻ 0. Therefore

2I ⊗ S + 2(I −G)−1 ⊗ (I −G)−1

is positive semidefinite, which implies that the first term is strictly convex. Now, consider the penalty
term. The second-order subdifferential for each ij is (Gan et al., 2019)(

1
ν0
− 1

ν1

)
ηZi,Zj

ν0

(1−ηZi,Zj
)ν1

e
( 1
ν0

− 1
ν1

)Gij(
ηZi,Zj

ν0

(1−ηZi,Zj
)ν1

e
( 1
ν0

− 1
ν1

)Gij + 1
)2

We can write the subgradient expression as( 1

ν0
− 1

ν1

) x

(1 + x)2
for x =

ηZi,Zjν0

(1− ηZi,Zj )ν1
e
( 1
ν0

− 1
ν1

)Gij .

For x > 0,

0 ≤ x

(x+ 1)2
≤ 1

4
.

Assume that ν1 > ν0 and ηZi,Zj ∈ [0, 1). Then x > 0, and it follows that

0 ≥

(
1
ν0
− 1

ν1

)
ηZi,Zj

ν0

(1−ηZi,Zj
)ν1

e
( 1
ν0

− 1
ν1

)Gij(
ηZi,Zj

ν0

(1−ηZi,Zj
)ν1

e
( 1
ν0

− 1
ν1

)Gij + 1
)2 ≤

1

4

( 1

ν0
− 1

ν1

)
.

These terms are weakly positive. Therefore, if we stack these terms into a N ×N matrix (with zeros
on the diagonal as we impose a simple matrix), the result is positive semidefinite. Therefore, the second
term is also convex. The sum of convex functions over the same domain is also convex. Therefore, the
whole problem is convex.
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A2.2 Theorem 1

Our proof follows the logic of the proof of the main theorem in Gan et al. (2019). Throughout, we work
with the case of σ2 = 1 without loss of generality, to lighten notation. We start by proving the following
lemma

Lemma 3. Define

r = max
{
2MΓ0(||W̃ ||∞+max(

1

2
pen(δ), τ), 2(2C1 + C3)MΓ0

√
lnN

T

}
.

If

r ≤ min
{ 1

3aMΣ0

,
1

3aMΓ0M
3
Σ0

}
min|G0

B|≥ r + δ

ρ(G0) ≤ 1

then A is non-empty and there exists Ĝ ∈ A s.t ||∆||∞:= ||Ĝ−G0||∞≤ r.

Proof. To prove this, define the set of true links that are ‘large enough’

B = {(i, j) : |G0
ij |> 2(2C1 + C3)MΓ0

√
lnN

T
},

the set of diagonal entries as D, and

∆ = Ĝ−G0.

We want to bound ||∆||∞≤ 2(2C1 + C3)MΓ0

√
lnN
T ≤ r. From the triangle inequality

||∆||∞= ||∆B +∆Bc ||∞≤ ||∆B||∞+||∆Bc ||∞.

As the entries of the matrices ∆B,∆Bc are in different locations by the definition of the index set,

||∆B||∞+||∆Bc ||∞= max(||∆B||∞, ||∆Bc ||∞)

So, we can sharpen our bound as

||∆||∞≤ max(||∆B||∞, ||∆Bc ||∞).

So we bound ||∆||∞ by bounding ||∆B||∞ and ||∆Bc ||∞ individually. By definition,

||∆Bc || = max({G0
ij : (i, j) ∈ B ∩ D})

≤ 2(2C1 + C3)MΓ0

√
lnN

T
.

So, we have to prove that

||∆B||∞≤ 2(2C1 + C3)MΓ0

√
lnN

T
.

Let Γ0
BB be the B,B block of the Hessian of logdet((I−G)′(I−G)), and Z be the matrix of penalisation

terms. Define the mapping

F (vec(∆B)) = −Γ−1
0,BB vec(H(G′,B +∆B)) + vec(∆B).
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The function F is continuous. Now F (vec(∆B)) = vec(∆B) at the point where H(G′,B + ∆B) =
H(G′,B) = 0. So, we will prove the result by showing that F (B(r)) ⊆ B(r) for the convex and compact
l∞ ball in R|B|. Then, by Brouwer’s fixed point theorem, there exists a fixed point vec(∆B) ∈ Br i.e
||∆B||∞≤ r.

To show this, let ∆ denote the N×N zero-padded matrix that equals ∆B on B and zero on Bc. Then,
we can write

F (vec(∆B)) = −Γ−1
0,BB

(
− (I −G+∆)−1

B − (S(I −G+∆))B + ZB

)
+ vec(∆B).

= Γ−1
0,BB

(
− (I −G+∆)−1

B + (I −G0)
−1 − (I −G0)

−1 − (S(I −G+∆))B + ZB

)
+ vec(∆B).

As in Gan et al. (2019), we can separate out this expression into two terms

F (vec(∆B)) ≤ ||I||∞+||II||∞

First, lets bound

||I||∞ = ||Γ−1
0BBR(∆)||∞

= MΓ0 ||R(∆)||∞.

To bound ||R(∆)||∞, note that as Σ0 is positive semi-definite by definition, it has a unique matrix
square root. Therefore, we can bound

||Σ
1
2
0 ||∞ = ||Σ0Σ

− 1
2

0 ||∞

≤ ||Σ0||∞||Σ
− 1

2
0 ||∞

= ||Σ0||∞||(I −G0)||∞
=≤ 2||Σ0||∞.

Then, following the steps in the proofs of lemmas 4 and 5 in Ravikumar et al. (2011) exactly, we can
bound

||MΓ0R(∆)||∞≤ 3a||∆||2∞K3
Σ0

where a is the maximum row sum of the matrix of connections A.
Now, by assumption, min|GB|≥ r + δ. Therefore, ||∆||∞≤ r, min|GB|≥ δ, and since pen(G) is

monotonically decreasing we have that ||ZB||∞≤ pen(δ). It follows that we can write

||II||∞≤MΓ0

(
||W (I −G0)||∞+max(

1

2
pen(δ), τ)

)
Now, we know from Cai et al. (2011).

||W ||∞≤ C1

√
lnN

T
.

As G ≻ 0, ρ(G) ≤ 1 we know that ||G0||∞≤ 1. As G0 is a simple network by assumption, we have
that

||I −G0||∞= 1 + ||G0||∞≤ 2.

As ||.||∞ is an operator norm, for any A,B

||AB||∞≤ ||A||∞||B||∞.

Therefore
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||W (I −G0)||∞≤ ||W ||∞||(I −G0)||∞≤ 2C1

√
lnN

T
.

Applying the steps in the proof of Theorem A in Gan et al. (2019) under our assumptions on 1
Tν0

, 1
Tν1

gives

|pen′
SS(δ)|
T

< C3

√
lnN

T
.

Therefore

2MΓ0(||W (I −G0)||∞+max
( |pen′

SS(δ)|
T

,
2

T
τ
)
≤ 2(2C1 + C3)MΓ0

√
lnN

T

≤ min
{ 1

3aMΣ0

,
1

3aMΓ0M
3
Σ0

}
.

Therefore, there exists a Ĝ such that ||Ĝ−G0||≤ r.

Proof. We structure the proof similar to the proof of Theorem A in Gan et al. (2019), itself based on
Ravikumar et al. (2011). Define the set of true links that are ‘large enough’

B = {(i, j) : |G0
ij |> 2(2C1 + C3)MΓ0

√
lnN

T
},

and the set of diagonal entries as D. Consider the problem

argmin
G>0,ρ(G)≤1,GBc=0

L(G).

Define the solution set as

A = {G : (−(I −G)−1 + S(I −G))B + ZB = 0, G > 0, ρ(G) ≤ 1},

and the function

H(GB) = −(I −GB)
−1 + S(I −GB) + ZB.

A is the set such that H(GB) = 0.

Define min(G0
ij) = 2(2C1 + C3)MΓ0

√
lnN
T . G0

ij ≥ 2(2C1 + C3)MΓ0

√
lnN
T if G0

ij ∈ B, and G0
ij ≤

2(2C1 + C3)MΓ0

√
lnN
T if G0

ij ∈ Bc ∩ D.
Now, we want to prove that the set A is not empty. Define

W̃ = S − Σ0

∆ = Ĝ−G,

a = ||A||∞ maximum degree on the binary network

R(∆) = (I − Ĝ)−1 − Σ
1
2
0 +Σ

1
2
0∆Σ

1
2
0 ,

the difference between the gradient of logdet((I − Ĝ)(I − Ĝ)) and the first-order Taylor expansion of
the gradient about G0. Now, we apply our lemma. To apply this, we must verify the conditions for the
lemma. Consider

r = 2(2C1 + C3)MΓ0

√
lnN

T
.
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Therefore min|G0
ij |> r+ δ. Furthermore, given our conditions on the sample size, the condition on r

also holds. Therefore

||Ĝ−G0||∞≤ 2(2C1 + C3)MΓ0

√
lnN

T
.

To convert this into a Frobenius norm bound, we note that there are at most a non-zero entries

||Ĝ−G0||F≤ 2
√
a(2C1 + C3)MΓ0

√
lnN

T
.

The result follows. Finally, we need to verify that Ĝ is a local minimiser of the loss function. We do
thus by showing that

L(Ĝ+∆)− L(Ĝ) ≥ 0

for some ||∆||∞≤ ϵ. To do this, split our loss function into

(1) = log det
((I − γG)(I − γG)′

σ2

)
− trace

(
S
(I − γG)(I − γG)′

σ2

)
(2) =

∑
i,j

ln
(η∗Zi,Zj

2ν1
e
−

|Gij |
ν1 +

1− η∗Zi,Zj

2ν0
e
−

|Gij |
ν0

)
.

Applying lemma A.5 in Battaglini et al. (2021) gives that this is greater than zero. Now we need to
bound the deviation in the penalty term (B). The same argument as in the bound of the fraction in (B)
step 3 in Theorem A. in Gan et al. (2019) is sufficient to bound this term as greater than zero. So, our
result follows.

Finally, we need to show the results for the values of C1 given the different tail conditions on the
distribution of ϵ. We can take these directly from the results bounding the deviation of ||W ||∞ in Cai
et al. (2011).

A2.3 Proposition 2

Proof. Our algorithm is a block-coordinate descent algorithm over a function that is separable into a
differentiable and non-differentiable part. To start with, we repeat a result from Tseng (2001). Consider
a function

f(x) = g(x) +
∑
i

h(xi)

where g(x) is a convex, differentiable, and single-valued function over its domain, and h(xi) is convex
and non-differentiable for each xi. Then a block-coordinate descent algorithm converges to the true
optimum of f().

Split our optimisation problem Eq. 9 into two parts

log det
((I − γG)(I − γG)′

σ2

)
− trace

(
S
(I − γG)(I − γG)′

σ2

)
, and∑

i,j

ln
(η∗Zi,Zj

2ν1
e
−

|Gij |
ν1 +

1− η∗Zi,Zj

2ν0
e
−

|Gij |
ν0

)
.

From the proof of proposition 1, we see that the first part is a convex, differentiable, and single-
valued function over the domain ρ(G) < 1. Furthermore, we see that the second part is convex and
non-differentiable over the domain ρ(G) < 1. So, we can apply the result from Tseng (2001) to show
that a block-coordinate descent algorithm will converge.
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