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Abstract

Empirical researchers often estimate spillover effects by fitting linear or non-
linear regression models using sampled network data. We show that common sam-
pling schemes bias these estimates, potentially upwards or downwards, and derive
biased-corrected estimators that researchers can construct from aggregate network
statistics. Our results apply under different assumptions on the relationship be-
tween observed and unobserved links, allow researchers to bound true effect sizes,
and to determine robustness to mismeasured links. As an application, we estimate
the propagation of climate shocks between U.S. public firms from self-reported sup-
ply links, building a new dataset of county-level incidence of large climate shocks.
Corrected estimates are half the size of standard regression estimates.
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1 Introduction

Empirical researchers measuring spillover effects often observe networks imperfectly, sampling
either too few or too many links between individuals (Newman, 2010). In economics of education
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and development economics, for instance, researchers often collect network data through surveys
that ask subjects to name up to a certain number of friends or contacts (e.g Rapoport and
Horvath, 1961; Harris, 2009; Calvó-Armengol et al., 2009; Conley and Udry, 2010; Oster and
Thornton, 2012; Banerjee et al., 2013; Shakya et al., 2017). In industrial organisation and
economics of innovation, technological similarity or geographic proximity are often used to proxy
firm connections (e.g Jaffe, 1986; Foster and Rosenzweig, 1995; Bloom et al., 2013). When
studying production networks, researchers often observe only large supply relationships between
firms (e.g see Atalay et al., 2011; Barrot and Sauvagnat, 2016) or payments recorded by a specific
bank or credit rating agency (e.g Carvalho et al., 2020).1 To illustrate the prevalence of this,
we surveyed articles published in the American Economic Review, Econometrica, or Quarterly
Journal of Economics from January 2020 to September 2024. Out of the 30 papers measuring
spillovers, 21 (70%) sample the network imperfectly.

A common empirical strategy for estimating spillover effects from some treatment is to
regress outcomes on the (weighted) sum of treatments of sampled neighbours, given that treat-
ment is independent of the strength of links between individuals. Examples include randomised
controlled trials on networks, natural experiments, and other design-based estimation strategies
that are increasingly prevalent in applied research (Borusyak et al., 2024). Our first main result
is to derive a simple closed-form expression showing how these estimates of spillover effects are
biased, and that the direction and magnitude of the bias is determined in predictable ways by
the sampling scheme. Standard sampling schemes creates an omitted variable – the (weighted)
sum of treatments of unobserved neighbours – that affects outcomes directly and covaries with
the (weighted) sum of treatments of sampled neighbours because of how the links are sampled.

To fix ideas, consider a setting where a researcher asks each subject to name up to five
friends and estimates spillover effects by regressing outcomes on the sum of these sampled
friends’ treatments. The regression error term implicitly includes the treatments of unobserved
friends: zero for individuals with five or fewer friends and non-zero for those with more than
five. When spillover effects are present, individuals with unobserved friends experience greater
expected variation in outcomes — since they tend to have more treated friends on average —
than those whose full friendship network is observed. As a result, the regression coefficient
on sampled friends’ treatments partly reflects variation in outcomes due to unobserved friends’
treatments, biasing it upward in magnitude.

One important consequence is that, unlike attenuation bias from classical measurement error,
estimates can be biased upward or downward. Furthermore, simulations suggest these that biases
can be economically significant in both directions. For example, applying the sampling rule for
females friends from the popular National Longitudinal Adolescent Health Data Set (Harris,
2009) to simulated networks leads to estimates that are over one and a half times the true
spillover effects on average. We further show that a sufficient condition for sampling links to

1Other examples of researchers using proxies for links between individuals include in estimates of
neighbourhood spillovers in crime (Glaeser et al., 1996), the role of social networks in labour markets
(Munshi, 2003; Beaman, 2011), and the effect of deworming on educational outcomes (Miguel and Kre-
mer, 2004).
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cause bias is that all links have the same sign, and that the researcher systematically samples too
few or too many links – typical in social and economic network datasets (Harris, 2009; Banerjee
et al., 2013; Barrot and Sauvagnat, 2016).

Our second main result is, therefore, a simple bias-correction for estimates from linear and
non-linear regression models, which only depends upon average numbers of missing links. This is
useful because collecting exact network data is very difficult in practice (Newman, 2010; Beaman
et al., 2021), but researchers can collect or estimate average numbers of missing links relatively
easily. For example, they can including a single additional survey question (e.g., “How many
friends do you have?”) or use external datasets that survey comparable networks more compre-
hensively (e.g see Jackson et al. (2022), Bacilieri et al. (2023)). The bias-corrected estimators
are consistent, asymptotically normally distributed, and perform well in simulation under com-
mon sampling rules where the uncorrected estimators are severely biased. We further show
how researchers can construct standard errors accounting for the uncertainty in the necessary
network statistics using a bootstrap. When the necessary network statistics are not observ-
able, we show how researchers can bound spillover effects and assess robustness of estimates
to measurement error instead. Furthermore, we demonstrate how researchers can extend our
results to cases where treatment assignment depends upon the network structure by modeling
the dependence between treatment assignment and network structure using a copula. This is
useful for researchers evaluating observational data where treatment might have been targeted
to a maximise a network-based outcome, or individuals may have re-adjusted links in response
to treatment.

As an application, we estimate how large climate shocks propagate between U.S. public
firms using a popular dataset containing self-reported supply links (Atalay et al., 2011). As
firms are only mandated to report customers making up more than 10% of sales, the dataset
under-samples their supply relationships. We combine the dataset with a newly constructed
county-level measure of exposure to large weather shocks, and then estimate spillover effects
correcting for sampling bias using network statistics from Bacilieri et al. (2023); Herskovic et al.
(2020).

We find that how links between firms are sampled biases estimates upwards. Corrected
estimates are half the size of standard regression estimates. Consequently, the indirect effects of
climate change though the supply chain are lower than the regression analysis would suggest. In
the appendix, we also show that undersampling study partnerships between high and low-ability
students can help account for differences between estimated and realised peer effects in Carrell
et al. (2013).

Our paper relates to a large literature in non-classical measurement error in econometrics
in general (e.g see Heckman, 1979; Bound et al., 2001; Oster, 2019), and contributes to the
nascent literature on the effect of misspecification in network econometrics in particular (Chan-
drasekhar and Lewis, 2016; Griffith, 2022; Lewbel et al., 2023; Yauck, 2022; Zhang, 2023; Hseih
et al., 2024; Griffith and Kim, 2024; Boucher and Houndetoungan, 2025). Our main contribu-
tion is to focus on the common setting where treatment is distributed independently from link
strength, and show how researchers can construct bias-corrected estimators in these settings
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under much weaker assumptions than in the existing literature. Our estimator does not require
researchers to impute the missing links using a parametric model of network formation (as in the
aggregate-relational data approach of Breza et al., 2020), impose parametric assumptions about
the counterfactual distributions of links (as in Boucher and Houndetoungan, 2025; Herstad,
2023), assume constant link-missingness rates (as in Lewbel et al., 2025), or drop large parts
of their sample that might contain incorrectly sampled links (as in Chandrasekhar and Lewis,
2016). By contrast, our bias-corrected estimators depend only upon quantities that researchers
can directly observe. Our results nest those in Griffith (2022) for the specific case of fixed choice
designs, which he analyses in detail. Our idea of using additional network data is similar to
Lewbel et al. (2023); Zhang (2023), but does not require researchers to collect an entire different
measure of the network. Our results are also closely related to the literature on design based es-
timation using linear combinations of exposures to exogenous shocks (Borusyak and Hull, 2023;
Borusyak et al., 2024). Again, our approach differs by not requiring researchers to specify a
counterfactual distribution of exposure to exogenous shocks to correct for bias.

A common strategy to address the mismeasurement of links is to first impute missing links
before then using full and imputed links to estimate spillover effects. A related literature on
unobserved networks seeks to estimate these missing links between individuals (e.g see Manresa,
2013; Lam and Souza, 2019; Battaglini et al., 2021; Higgins and Martellosio, 2023; Lewbel
et al., 2023; Rose, 2023; De Paula et al., 2024; Griffith and Kim, 2024; Marray, 2025). But
these estimators require much richer data - typically a short panel of individual outcomes -
and stronger structural assumptions on the data-generating process than our approach (e.g.
Battaglini et al., 2021; De Paula et al., 2024). Moreover, measurement error in the estimated
network may itself bias regression estimates of spillover effects.

We proceed as follows. In Section 2, we characterise the effect of sampling links on linear
regression estimates of spillover effects, and present bias-corrected estimators. Section 3 extends
our results to common non-linear models, and 4 to cases when treatment depends on network
structure. In Section 5, we assess performance of estimators by simulation. Finally, Section 6
presents our empirical examples. Proofs and additional results are provided in the appendix.

2 Theory for linear models

Here, we develop an econometric framework for estimating spillover effects from sampled links
when outcomes are linear in the (weighted) sum of neighbours’ treatments (spillovers). We
present two main sets of results: on estimator bias, and on bias-correction.

First, in Section 2.1, we derive a tractable closed-form expression for the bias from sampling
links in linear regression estimators. From the expression, a researcher can easily determine
whether sampling will bias their estimate, and if so whether it is biased upwards or downwards.
We then derive a sufficient condition for bias that covers most common sampling schemes in
economic and social network research when the underlying network is binary, and illustrate this
in Section 2.2 with extended examples of the three most common sampling schemes.

Second, we use the expression to construct bias-corrected estimators for spillover effects
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from sampled network data that only require knowledge of aggregate network statistics – not an
estimate of where the links are missing (Breza et al., 2020), multiple measures of the network
(Lewbel et al., 2023), or knowledge of counterfactual network generating distributions (Herstad,
2023). The estimators require an assumption on the relationship between the observed and
unobserved number of links, which will vary depending on the sampling rule that a researcher
uses. So, in Section 2.3, we derive these estimators under two assumptions that cover the
common set of sampling rules used in applied research. Furthermore, we derive the asymptotic
distribution of these estimators, present a bootstrap estimator for the variance, and show how
researchers can use the results to assess robustness of estimators to sampling links.

2.1 Setup

Let there be N = {1, ..., N} individuals situated on a simple network G = (N , EG ,WG) with
edges EG and weights WG. We can represent these relationships with the N × N adjacency
matrix G, where elements gij ∈ {0, 1} if links are unweighted and gij ∈ R if links are weighted.
Define the degree of individual i as di =

∑
j gij the (possibly weighted) number of connections

from all other individuals to i.
Instead of observing the true network, the researcher samples a set of edges EH and weights

WH between individuals in N through the non-stochastic sampling rule S : (EG,WG) →
(EH ,WH) such that EH ∩ EG ̸= ∅. We can split the adjacency matrix of the true network
into the sampled part H and an unsampled part B that encodes the network of incorrectly
sampled links

G = H +B. (1)

This decomposition is straightforward yet useful, as it yields a simple closed-form expression
for estimator bias.

Let B denote the set of nodes with at least one (incoming) link sampled incorrectly.2 Further,
define the sampled degree of node i – the total (weighted) number of sampled connections from
all other individuals to i – as dHi =

∑
j hij , and the unobserved degree of node i – the total

(weighted) number of connections from all other individuals to i that are not sampled – as
dBi =

∑
j gij −

∑
j hij .

Consider the problem of estimating the causal effect or structural parameter β – the ‘spillover
effect’ of an additional neighbour being treated on outcomes – in the model

yi = β
∑
j

gijxj + ϵi. (2)

Outcomes yi are linear in the (weighted) sum of treatment xi of neighbours on the network
(we refer to this sum as ‘spillovers’).3 We assume treatment is independently and identically
distributed across nodes, and distributed independently of link strength.

2Equivalently, B is the index set of rows of B with at least one non-zero entry.
3Formally, ((gij)Nj=1, xi, ϵi)

N
i=1 can be described with some joint distribution that we do not restrict

here.
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Assumption 1. Distribution of treatment xi.

A: xi ∼ i.i.d. FX – treatment is drawn i.i.d. from a common distribution,

B: xj ⊥⊥ gij , hij ∀i, j ∈ N – treatment is distributed independently of true and sampled
link strength.

Further, assume that (2) is specified correctly

Assumption 2. Distribution of structural shocks. E(ϵi) = 0,
∑

j gijxj ,
∑

j hijxj ⊥⊥ ϵi.

and that the expectation of the square of observed spillovers is finite.4

Assumption 3. Finite second moment of observed spillovers. E((
∑

j hijxj)
2) < ∞.

The researcher only observes the (weighted) sum of treatments of sampled neighbours

∑
j

hijxj =


∑

j gijxj if i /∈ B,∑
j gijxj −

∑
j bijxj if i ∈ B,

(3)

as opposed to those of the true neighbours. Suppose they estimate spillover effects using their
sampled analogue of the data generating process – regressing outcomes on sampled spillovers:

yi = β
∑
j

hijxj + ξi. (4)

This regression model is misspecified. Using our decomposition in (1), we can express the
misspecification in a very simple form:

ξi = β
∑
j

bijxj + ϵi.

Sampling links inadvertently creates an omitted variable – spillovers on unobserved links –
that enters the error term. Thus, we see that the linear regression estimator is biased, and with
the familiar bias function (MacKinnon and Smith, 1998)

Proposition 1. Make Assumptions 1-A, 2, 3. The ordinary least-squares estimator for (4) β̂OLS

is biased, with bias function

β̂OLS = β
(
1 +

1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
+

1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2
.

This bias function tells us three things. First, sampling biases the regression estimator if
observed spillovers covary with sampled spillovers due to the sampling rule,

E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
̸= 0

=⇒ E(β̂OLS) = β
(
1 + E

( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

))
̸= β (5)

4In the general case with an intercept, controls etc in Appendix A.3, this is the familiar assumption
that regressors have finite variance (Cameron and Trivedi, 2005).
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even though treatment is assigned independently across individuals as in a controlled or
natural experiment.

Second, unlike classical measurement error where estimates are always attenuated, sampling
can bias estimates upwards or downwards depending on whether the dependence between ob-
served and unobserved spillovers is positive or negative.5 Indeed, the sign of the bias is knowable
in advance in many cases. The estimator is upwards biased if E( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)) > 0,
and downwards biased if E( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)) < 0.
Third, all we need to model to obtain unbiased and consistent estimates of spillover effect

is the dependence between observed and unobserved spillovers E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)
. The

researcher does not necessarily need to know where the missing links are, to impute the missing
links (Breza et al., 2020), or to know anything else about the distribution of unobserved links
(Borusyak and Hull, 2023; Herstad, 2023; Boucher and Houndetoungan, 2025).

Some discussion of our assumptions is warranted before proceeding. We consider the sim-
plest data generating process here without loss of generality. Results apply to functional forms
including an intercept, controls, and panel data (see Appendix A.3), as well as alternative speci-
fications where researchers construct a dummy variable for at least one neighbour being treated
(e.g Barrot and Sauvagnat, 2016, see Appendix A.5), and non-linear social network models in
Section 3.

Assumption 1-B is strong assumption, but commonly satisfied in applied research. It corre-
sponds to experiments where the researcher directly assigns treatment (e.g Miguel and Kremer,
2004; Oster and Thornton, 2012; Conley and Udry, 2010), the increasingly popular ‘design-based’
estimation strategies that leverage different unit-level exposures to exogenous shocks (e.g Barrot
and Sauvagnat, 2016; Carvalho et al., 2020; Borusyak et al., 2024), or cases where treatment
and network formation are determined by different processes (e.g Coleman et al., 1957; Calvó-
Armengol et al., 2009). In Section 4, we discuss how to extend our results when Assumption
1-B does not hold, such as when treatment is targeted by a planner based on network structure
or individuals endogenously adjust links based on treatment.

2.2 Motivating examples

To fix ideas, consider the three following examples that cover common sampling schemes used
to study economic and social networks.

Example – classroom setting, fixed choice sampling rule. Suppose the individuals
are children in a classroom. Links denote friendships between children, and any weights may
denote time spent together. A child’s degree is their number of friends. To collect network data,
the researcher asks each individual to name at most m friends. This sampling rule is commonly
used to collect network data through surveys (Coleman et al., 1957; Calvó-Armengol et al., 2009;

5This may seem to be a trivial point. But it is known for applied researchers to assume that errors
sampling links will attenuate estimates like classical measurement error (for an example, see Oster and
Thornton, 2012).
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Oster and Thornton, 2012; Banerjee et al., 2013; Shakya et al., 2017).6

If a child has fewer than m friends, the researcher samples all of their possible friendships
correctly. If a child has more than m friends, some are missed, and only m links are recorded
(i ∈ B if di > m). Therefore, the spillovers they sample are

∑
j

hijxj =


∑

j gijxj if di ≤ m∑
j gijxj −

∑
j bijxj otherwise

– equal to true spillovers for children with fewer than m friends, but different for children
with more than m friends. In expectation, the difference weakly increases with the number of
friendships the child has.

The researcher estimates spillover effects by regressing each child’s outcomes on their sam-
pled spillovers. The error term ξi contains the treatments of additional friends of children with
more than m friends. As this number is higher the more friends a child has over m, it covaries
positively with sampled spillovers. Therefore the spillover estimate is upward biased.

Example – village setting, sampling based on group membership. Suppose the
individuals are villagers across a set of villages. Links denote borrowing relationships between
villagers, and any weights may denote amount lent to each other (as in Banerjee et al., 2013).
A villager’s degree is their number of individuals they have lent to (or total amount lent, if
weighted). To collect network data, the researchers assume that all individuals within the same
village lend to each other. This is common in observational data where researchers can tell which
types of individuals might be connected, but not the exact connections (e.g Chetty et al., 2011;
Bloom et al., 2013; Carrell et al., 2013).

Consider a case where villages are sized mi, so the researchers assume that each individual is
connected to the mi others in their village. This adds links for villagers who have lent to fewer
than mi others (i ∈ B if di < mi). Therefore, sampled spillovers are

∑
j

hijxj =


∑

j gijxj if di = mi∑
j gijxj −

∑
j bijxj otherwise

– equal to true spillovers for the villagers who lend to all mi others in the village, but more
than true spillovers for villagers who have not. In expectation, the difference weakly decreases
with the number of links the villager has.

The researcher estimates spillover effects by regressing each individual’s outcome on the
treatments of all others in their village. The error term ξi subtracts the sum of treatments
of the individuals in the village that each individual does not lend to. The more individuals
they actually lend to, the closer this number is to zero, so it covaries negatively with sampled
spillovers. Therefore the spillover estimate is downward biased.

6All comments about fixed choice designs also apply to increasingly common cases where researchers
ask individuals to name up to an unspecified number of friends but individuals with more friends are
less likely to name all of their friends due to time constraints or effort filling out the survey.
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Example – firm supply network, high-weight links. Suppose the individuals are firms.
Links denote supply relationships, and weights denote the proportion of total sales that goes to
that firm. To collect network data, researchers take the links where weights are greater than
a threshold – the ‘most important’ connections. This is common in observational data where
individuals must disclose important interactions (Atalay et al., 2011; Barrot and Sauvagnat,
2016). For example, US publicly listed firms must disclose customers that make up at least 10%
of their sales to the Securities and Exchange Commission.

Consider a case where researchers only sample links above some weight τ . Unless all firm
supply relationships have weight greater than τ , researchers sample fewer links to firms than
they actually have. Therefore, sampled spillovers are

∑
j

hijxj =


∑

j gijxj if gij > τ ∀j∑
j gijxj −

∑
j bijxj otherwise.

The researcher estimates spillover effects by regressing outcomes on treatments of customers.
The error term contains the sum of treatments of additional customers of firms with link weights
less than the threshold. Under the standard distribution used to model firm sales, this will co-
vary positively with observed sales (Herskovic et al., 2020).7 Therefore the spillover estimate is
upward biased.

An obvious next question is when sampling schemes induce dependence between spillovers
on sampled and unobserved links. In other words, when does sampling link lead to biased
spillover estimates in general? Suppose all links on the network have the same sign, Assumption
1 holds, and expected treatment is non-zero. A sufficient condition is that the expected number
of unobserved links of each individual has the same sign – so the researcher either samples a
subset or superset of the true links.

Proposition 2. Make Assumption 1-A, 1-B. Further, assume that all links on the network have
the same sign – either gij ≥ 0 or gij ≤ 0 ∀j – and that E(x) ̸= 0. Then if the expectation of
unobserved degree has the same sign for all nodes with potentially unsampled links

E(dBi |dHi ) ≥ 0 ∀i ∈ B or E(dBi |dHi ) ≤ 0 ∀i ∈ B

and is non-zero for at least one i, then

E
( 1

N

∑
i

(
∑
j

hijxj)(
∑
j

bijxj)
)
̸= 0.

This covers the sampling schemes commonly used to study economic and social networks,
including the examples of fixed choice designs, group membership, and sampling high weight
links discussed below. Many social and economic networks have links with all positive or all
negative signs, such as firm-level production networks (Atalay et al., 2011), information sharing
networks (Banerjee et al., 2013), and friendship networks (Calvó-Armengol et al., 2009). For
intuition, we give an extended example with a fixed choice design in Appendix A.2.

7See the corresponding simulation in section 5.
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2.3 Bias-corrected estimators

Recall our bias function (MacKinnon and Smith, 1998)

β̂OLS = β + β
1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

+
1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2
.

Taking expectations and solving for β gives us a bias-corrected estimator8

β̂ =
β̂OLS

1 + η
,

where

η = E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
.

In words, the researcher needs to rescale their estimate of the spillover effect to adjust for
the dependence between sampled spillovers and unobserved spillovers induced by the sampling
rule. In practice, the researcher needs to compute9

β̂ =
β̂OLS

1 + η̂

where η̂ is an estimate of η. Where shocks are distributed independently of links (Assumption
1-B), the researcher can construct a good analytic approximation of η̂ from aggregate statistics
of the degree distribution and expected treatment. Taking the Taylor expansion of η around the
mean observed and unobserved spillovers gives (Billingsley, 2012)

η =
E( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj))

E( 1
N

∑
i(
∑

j hijxj)
2)

+O(
1

1
N

∑
i(
∑

j hijxj)
4
),

≈
E( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj))

E( 1
N

∑
i(
∑

j hijxj)
2)

. (6)

where the remainder term O( 1
1
N

∑
i(
∑

j hijxj)4
) is negligible.10

8This approach is equivalent to controlling for the expected unsampled spillovers amongst nodes that
have at least some incorrectly sampled links

zi =

0 if i /∈ B,

E(
∑

j hijxj |i ∈ B) if i ∈ B.

But it does not require knowing which nodes have some incorrectly sampled links, just how many. In
many cases – such as the group membership and high-weight link examples – the researcher does not
know which nodes have some incorrectly sampled links. Thus, we consider the bias-corrected estimator
instead.

9In some cases, the researcher may be able to observe η directly. For example, in population-level
datasets where some links are distorted in order to preserve privacy, a data provider could in principle
disclose η alongside the data. But in most cases, this dependence will be unobserved.

10In cases where the researcher is worried it might not be, we show how researchers can apply a higher
order expansion or approximate the full expectation by simulation in Appendix A2.
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Th researcher can estimate this expression from aggregate statistics of the degree distribu-
tion plus the sampled network data and expected treatment status under the assumption that
treatments are distributed independently from links, plus an appropriate assumption on the
dependence of sampled and unobserved degree for their sampling scheme.

First, assume that the distribution of observed degree is independent of the distribution of
unobserved degree amongst nodes with some potentially incorrectly sampled links. This as-
sumption applies to common sampling schemes used by applied economists when the underlying
network is unweighted.

Assumption 4.a. Distribution of unsampled degree – dBi ⊥⊥ dHi |i ∈ B.

For illustration, consider the following examples.
Example – classroom setting, fixed choice design with binary network. If there

are potentially unsampled friendships to a child i ∈ B, we know that the sampled (in)degree
equals the threshold value dHi = m i.e they have m friends. Therefore, the distribution of sam-
pled degrees dHi given that i ∈ B has a point mass at m. All children with some unsampled
friendships have m sampled friends. It follows that the distribution of the number of unsam-
pled links dBi is independent of the distribution of sampled links amongst individuals where i ∈ B.

Example – village setting, group membership with binary network. Assume for
simplicity that all villages have an equal size m. For all i, the number of sampled neighbours
equals one minus the village size dHi = m− 1 by construction. Therefore, the distribution of the
degree dHi given that i ∈ B has a point mass at m − 1. It follows that the distribution of the
unsampled degree dBi is independent of the distribution of sampled links amongst individuals
where i ∈ B.11

If no links differ in strength, we need not worry that subjects report links in an order that
might violate this assumption.

In this case, we can construct η̂ in terms of the mean sampled degree of nodes that have at
least one potentially unsampled link, the mean missing degree of nodes that have at least one
potentially unsampled link, and the expected treatment status of each node, defined as

d̂H =
1∑

i∈B 1i

∑
i∈Bi,j

hij , d̂B =
1∑

i∈B 1i

∑
i∈B,j

bij ,

x̄ =
1

N

∑
i

xi, NB = |B|.

The resulting bias-corrected estimator is as follows.

Proposition 3. Make Assumptions 1-A, 1-B 2, 3, 4.a. Consider the estimator

β̂ =
β̂OLS

1 + η̂
where η̂ =

NB

N d̂H d̂Bx̄2

1
N

∑
i(
∑

j hijxj)
2

(7)

11This argument extends to the case where the size of the group varies across some groups, as long as
the degree of each individual within each group does not itself depend on the size of the group.
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Let β̂N denote an estimate from sample size N . E(β̂N ) ≈ β and β̂
p−→ β.

The rescaling factor η̂ depends only on two aggregate network statistics – the sampled mean
degree and true mean degree of individuals who have at least one potentially unsampled link.
It does not require knowing which specific links are missing.

Second, we can relax Assumption 4.a and allow the number or strength of unobserved links to
depend on the number or strength of observed links. For example, individuals may name stronger
connections first in a survey. Instead, we can adopt the weak assumption that we can model
observed and unobserved link counts or strengths using a common conditional distribution.

Assumption 4.b. There exists a joint distribution over (dHi , di)i∈B such that we can write
E(dBi |dHi ) = E(di|dH = dHi )− dHi ∀i ∈ B.

Example – classroom setting, fixed choice design naming stronger connections
first. Assume that weighted degrees (number of friends) are drawn from a common degree dis-
tribution Fd, and for simplicity assume that all weights are positive. The researcher samples up
to m friendships per child. Children list their strongest friendships first. The strength of each
unobserved friendship must be less than or equal to the lowest strength of the observed friend-
ships. Otherwise, the child would have named that friendship earlier. So, for children with at
least one potentially missing friendship, 0 ≤ di − dHi ≤ (N −m)min{hij |hij > 0}. Accordingly,
E(dBi |dHi ) = E(di|di ≥ (N −m)min{hij |hij > 0})− dHi .

In this case, we can construct the bias-corrected estimator using the approximation η̂ in terms
of each individual’s sampled degree, the average number of unobserved links for individuals with
given sampled degree,

d̂B(dH) =
1∑

i∈B 1(dHi = dH)

∑
i∈B

dBi 1(d
H
i = dH),

and the expected treatment status. The resulting bias corrected estimator is as follows.

Proposition 4. Make Assumptions 1-A, 1-B, 2, 3, 4.b. Consider the estimator

β̂ =
β̂OLS

1 + η̂
where η̂ =

1
N

∑
i∈B dHi d̂B(dHi )x̄2

1
N

∑
i(
∑

j hijxj)
2

Letting β̂N denote an estimate from a sample of size N , E(β̂N ) ≈ β and β̂
p−→ β.

These estimators have an asymptotically normal distribution, with a variance that depends
upon the estimates of mean missing degrees. Denote these as a vector θ defined as the solution
to the moment conditions

θ − 1

N

N∑
i=1

θi = 0.

Our estimators are sequential estimators, meaning the asymptotic distribution of the spillover
estimate depends upon both the uncertainty in the estimates of θ and the sensitivity of η̂(θ̂) to
θ̂ (Newey, 1984).
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Proposition 5. Make Assumptions 1A ,2,3, 5, A1. Define

(
h1(θ)

h2(θ, β)

)
=

(
θ − 1

N

∑N
i=1 θi

1
N

∑
i(
∑

j hijxj)(yi − (1 + η(θ))β(
∑

j hijxj))

)
(
K11 K12

K21 K22

)
= plim

1

N

∑
i

E

(
−1 0

−∂η(θ)
∂θ β(

∑
j hijxj)

2 −(1 + η(θ))(
∑

j hijxj)
2

)
(
S11 S12

S21 S22

)
= plim

1

N

∑
i

E

(
h1ih

′
1i h2ih

′
1i

h2ih
′
1i h2ih

′
2i

)

β̂ is a consistent estimator of β. Furthermore,

√
N(β̂ − β) ∼ N(0,K−1

22 (S22 +K21K
−1
11 S11K

−1
11 K ′

21 −K21K
−1
11 S12 − S21K

−1
11 K ′

21)K
−1
22 ).

In practice, we propose using a bootstrap to estimate the variance of the estimator. For
example, assume that we are computing η̂ under Assumption 4.a. In the first step, we simulate
P different possible unobserved graphs consistent with the same missing degree. In the absence
of any link function that determines how likely any two individuals are to be connected given that
their links are not sampled correctly, we assume that incorrectly observed links are distributed
uniformly at random over all possible missing entries in B. In the second step, we construct
M bootstrap estimates of β̂ for each B. Similar bootstrap estimators can be derived under
alternative assumptions on the network sampling process.

Algorithm 1 Bootstrap estimator for ŝ(β̂) under 4.a

1: procedure Bootstrap (dB, H, {EH
i }Ni=1, x, y)

2: for j ∈ 1, ...,M do
3: Draw {Bik|k /∈ EH

i }s.t
∑

{Bik|k/∈EH
i }Bik = Nd̄B.

4: Construct {β̂kj}Pk=1 by a regression bootstrap from Bj, H, x, y.
5: end for
6: β̄kj =

1
MP

∑
k,j β̂kj.

7: ŝ(β̂) =
√

1
MP

∑
k,j(β̂kj − β̄kj)2

8: end procedure

A main benefit of our approach over existing estimators is that the estimators depend only
upon aggregate network statistics researchers can sample empirically or collect from networks
with similar properties. This means that researchers can construct consistent and approximately
unbiased estimates under relatively mild assumptions compared to conditioning on unobserv-
able counterfactual networks (Breza et al., 2020; Herstad, 2023; Borusyak and Hull, 2023) or
constructing multiple entire network measures (Lewbel et al., 2023). In a survey, the researcher
can collect the data required to implement the estimator by including one more question: ‘How
many of these types of connections do you have?’. If data providers sample networks to preserve
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anonymity, they can disclose these quantities while preserving individual privacy. In cases where
the researcher cannot sample individuals in the network – for example when using data collected
by others – researchers can use the statistics from similar, better-sampled networks. Additional
survey questions could also help estimate the mean missing degree under relatively weak assump-
tions. For example, a researcher could use the question "How many of your friends smoke?"
plus an assumption on the distribution of smokers in the population to recover mean missing
degree in a friendship network (closer to the common aggregate relational data approach, but
still requiring less stringent assumptions on the network generating process Breza et al., 2020).

A potential concern with using a first-order approximation η̂ in our bias correction is that
the approximated η̂ will be far from the true η and lead to estimates that are far from the true
spillover effect. While a concern in theory, this does not appear to be an issue in practice. To
assess this, we carry out extensive simulations in Section 5 and the Appendix on simulated and
real networks under the most common sampling schemes, comparing estimates to true spillover
values and bias-corrected estimates using the true η. The rescaled estimators perform very well
in each case in relatively small sample sizes, and are very close to estimates constructed using
the true η.

2.4 Robustness

In addition to constructing bias-corrected estimators, the researcher can use our bias function
to assess the robustness of spillover estimates to sampling bias in two ways. First, they can
recover the value of η needed to reduce the spillover estimate below some decision threshold
τ . Examples include thresholds relevant for optimal policy decisions or values required for test
statistics to cross critical values at preferred significance levels.

Proposition 6. Make Assumptions 1-A, 2, 3. Then

β > τ if and only if

η <
β̂OLS − τ

τ
.

Second, if the researcher can bound the dependence of observed and unobserved spillovers
η ∈ [ηmin, ηmax], then the true spillover effect is bounded as

β ∈
[ β̂ OLS

1 + ηmax
,

β̂ OLS

1 + ηmin

]
.

Under Assumption 4.a, these results depend only on the mean missing degree among indi-
viduals with at least one missing link. In this case, the decision threshold can be rewritten as a
function of the mean number of missing links among individuals with at least one missing link:

β̂ OLS > τ if and only if

d̂B <
( 1

N

∑
i(
∑

j hijxj)
2

NH

N x̄2d̂H

) β̂ OLS − τ

τ
. (8)
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Thus, spillover effects exceed a threshold – for example, actually passing the critical threshold
to determine if we can reject the hypothesis of zero spillover effects –if and only if the researcher
is missing fewer than a certain number of links. Moreover, the bounds depend on the minimum
and maximum mean number of missing links

ηmax = η(d̂Bmax), ηmin = η(d̂Bmin).

3 Theory for nonlinear social network models

We can also extend our bias-correction approach to models where outcomes are linear in spillovers
of indirect neighbours. To show this, we consider a non-linear specification commonly used in
research on social networks (Bramoullé et al., 2009; Calvó-Armengol et al., 2009). Here, sampling
bias also affects the standard instruments used to account for endogeneity in lagged spillovers.
Thus, researchers must both correct instruments and bias-correct the resulting estimates.

3.1 Setup

An alternative model often used to measure spillover effects specifies outcomes as linear in the
sum of indirect spillovers across all paths through the network, rather than just direct spillovers
(e.g Calvó-Armengol et al., 2009; Carvalho et al., 2020). Formally

y = λGy + xβ + ϵ (9)

= (I − λG)−1(xβ + ϵ).

where y = (y1, y2, ..., yn) is the N × 1 vector of individual outcomes, and x = (x1, ..., xn) is
the N × 1 vector of treatments.12 The inverse

(I − λG)−1 =
∞∑
k=1

γkGk

sums spillovers across all paths of length k = 1, 2, ... through the network.
In this setting, sampling the network generates more complex misspecification than in the

linear model. Comparing the true paths of length k to sampled paths of length k using our
decomposition (1) gives

Gk = (H +B)k

= Hk +Hk−1B + ...+Bk.

12Without loss of generality, we focus on the case without contextual effects Gx here for ease. Our
results extend to estimates of contextual spillover effects. Then, researchers also need to account for the
identification problems raised in Manski (1990); Blume et al. (2015).
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True paths include paths through only sampled links, paths through only unobserved links,
and paths created by combining sampled and unobserved links. Estimator bias therefore de-
pends on the covariance between treatment transmitted along sampled paths and treatment
transmitted along additional paths

A researcher estimates structural parameters β, λ – the effect of treatment on outcomes, and
the spillover effect of one individual’s outcomes on others’ – using the sampled network by fitting

y = λHy + xβ + ξ. (10)

Using our decomposition (1), we see that by sampling the network the researcher creates an
omitted variable By that enters the error term

ξ = λBy + ϵ.

The standard approach is to estimate this model by two-stage least squares, constructing
instruments using the treatment of sampled friends of sampled friends (Bramoullé et al., 2009).
We focus on this estimator, rather than the maximum-likelihood estimator. We adopt the
standard assumptions used for this estimator (Kelejian and Prucha, 1998; Bramoullé et al.,
2009; Blume et al., 2015), spelled out in Appendix A.7. Denote our regressors as z∗ =

(
Gy, x

)
,

z =
(
Hy, x

)
. Call zB = z∗ − z =

(
By, 0

)
, and denote instruments built from the sampled

network as J = H(I −H)−1x =
(
Hx H2x ...

)
, and the corresponding projection matrix as

PJ . The two-stage least squares estimator is(
λ̂ 2SLS

β̂ 2SLS

)
= (z

′
PJz)

−1z
′
PJy.

As with the linear model, this estimator can be biased by sampling.

Proposition 7. Make Assumption 2 and the standard Assumption in A.7. Let P denote a
projection matrix, z =

(
Gy, x

)
, J =

(
x,Hx,H ′Hx, ....

)
. There exist H,B such that the

two-stage least-squares estimator

θ̂ 2SLS =

(
λ̂ 2SLS

β̂ 2SLS

)
= (z

′
PJz)

−1z
′
PJY.

is biased and inconsistent.

To see why, note that the instrument exogeneity condition is

E(J ′ξ) = E
((

x,Hx,H ′Hx, ....
)′

(λBy + ϵ)
)

= E
((

x,Hx,H ′Hx, ....
)′

(λBy)
)
+ E

((
x,Hx,H ′Hx, ....

)′
ϵ)
)
.

The second term is the instrument exogeneity condition if H is the true network. Expanding
the first term gives

E
((

x,Hx,H ′Hx, ....
)′

(λBy)
)
= E

(
(H(I − λH)−1x)(λB(I − λ(H +B))−1(xβ + ϵ))

)
,
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the product of spillovers between two individuals on paths only containing sampled links,
and spillovers between two individuals on paths containing either unsampled links alone or both
sampled links and unsampled links. The estimator fails when these two covary.13

3.2 Bias-corrected estimator

We construct bias-corrected estimators using the logic in Section 2. First, we must construct
correct instruments for spillovers through the sampled network. Once instruments are correct,
the second stage is a linear regression of instrumented spillovers on the sampled network on
outcomes. So, we can apply the same bias correction to the estimated coefficient in the second
stage regression to account for the omitted By term.

To construct correct instruments for Hy, we account for the expected number of missing
paths between individuals. Following (Kelejian and Prucha, 1998), we use that

E(Hy) = E(H(I + λ(H +B))−1xβ)

= E(H(H +B + (H +B)2 + (H +B)3 + ...)xβ).

Therefore we use instruments

J∗ =
(
Hx, E(Bx), E(HBx|H), ...

)
Implementation requires computing the expected number of unobserved paths of length k

between nodes through the network given the sampled network, using knowledge of the sampling
scheme and an assumption on the distribution of missing links given observed links. To give an
example, make the following assumption on the distribution of missing links.

Assumption 5. The distribution of unobserved links is independent of the distribution of
observed links for individuals with at least some unobserved links – Bij ⊥⊥ Hjk ∀i ∈ B, Hij ⊥⊥
Bjk ∀j ∈ B.

This assumption applies for networks under the common sampling schemes given above
when all links are drawn from a common distribution. Other assumptions may be needed if, for
example, some individuals are systematically more popular or name links in an order.

Expected numbers of walks then depend on sampled walks and powers of the mean missing
degree. Considering the case of paths of length 2 for simplicity, and imagining that there are m

possible incorrect entries in column j of H, we have

13Here, we make no assumption on the fraction of links that are incorrectly sampled. Lewbel et al.
(2024) show that, in this setting, if the fraction of links that are incorrectly sampled falls quadratically in
sample size, the two-stage least-squares estimator remains consistent. The first term in our instrument
exogeneity condition vanishes as the sample size becomes larger. But, for the common sampling schemes
listed above we would not expect the fraction of links incorrectly sampled to fall with sample size.
Additionally, we see large finite-sample biases in simulations of common sampling schemes on networks.
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E(HB|H)ik = E(
∑
j

HijBjk|H),

=
∑
j

E(HijBjk|H) by linearity of E,

=
∑
j

HijE(Bjk|H) by 5,

=
∑
j

Hij

dBj
|N |−m

.

Then the researcher can proxy the numbers of missing paths through the network Hk−1B, ...

with the expected number of missing paths through the network given the sampled adjacency
matrix and missing mean degree. Formally, this gives

Proposition 8. Under Assumption 5, the variables J∗ =
(
Hx, dBHx, H2x, ...

)
are valid

instruments for Hy conditional on By.

The endogeneity problem from the missing By in the second stage regression remains

y = λĤy + ξ,

ξ = By + ϵ.

As in Section 2, the researcher can bias-correct estimates to deal with the omitted term By.

Proposition 9. Define

θ̂SS = (z
′
PJ∗z)−1z

′
PJ∗y, ẑ = PJ∗z, η̂ = (N−1z′PJ∗z)

−1N−1ẑ′zB.

The estimator
θ̂ = (I + η̂)−1θ̂SS (11)

is an unbiased estimator of θ =

(
λ

β

)
.

Let θ̂N denote an estimate from sample size N . E(θ̂N ) ≈ θ and θ̂
p−→ θ.

This estimator is also asymptotically normal. We derive these results in appendix A.7, and
show in Appendix A.8 that the estimator performs well in finite samples by simulation.

4 Extension – treatment dependent on network struc-

ture

In some cases, researchers may wish to estimate spillover effects when treatment depends on links.
For example, treatment may be targeted by a planner based on network structure (e.g Galeotti
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et al., 2020), or individuals may form their links based on treatment status (for examples, see
Calvó-Armengol et al., 2009; Jackson, 2010).

If Assumptions 1.A, 2,3 still hold, and the data is drawn from (2) as before, we can still con-
struct unbiased estimates using the bias function in Proposition 1. But we can no longer model
η̂ using purely aggregate statistics of the degree distribution under Assumption 1.B. Instead, we
need to model the distribution of unobserved links and treatment. Formally, unobserved links
bij are dependent on xj , and some additional dependence parameters θ. Thus,

η ≈
E( 1

N

∑
i(
∑

j hijxj)(
∑

j bij(xi, xj , θ)xj))

E( 1
N

∑
i(
∑

j hijxj)
2)

.

To compute η̂, we need a way of modeling the expected treatment of the observed and
unobserved neighbours given observed and unobserved links.

One possible route is to fit a parametric model for the joint distribution of links on the
network and treatment as in Borusyak and Hull (2023) and Herstad (2023). Instead, we consider
the case where the researcher does not want to impose a parametric model for joint distribution
of treatment and links ex-ante, but they are willing to model treatment as dependent upon
some network statistic. This is a weaker assumption, as the researcher does not have to place
restrictions upon many other features of the network, as in a full parametric model. We propose
using a copula, as copulas allow us to flexibly model the dependence structure between two
distributions preserving their marginal distributions.

Here, for simplicity, assume that treatment xj depends upon in-degree dj . Denote the
observed distribution of treatment as FX , and the distribution of the in-degree as FD. The pairs
(xi, di) are distributed according to some unknown joint density function G() with marginal
distributions FX , FD. The researcher can flexibly model the joint density of treatment and this
network statistic from empirical marginal distributions using a copula (Nelsen, 2006; Trivedi and
Zimmer, 2007).

Definition 1. A bivariate copula is a quasi-monotone function C() on the unit square [0, 1] ×
[0, 1] → [0, 1] such that there exists some a1, a2 such that C(a1, y) = C(x, a2), and C(1, y) =

y, C(x, 1) = x ∀x, y ∈ [0, 1].

From Sklar’s theorem (Nelsen, 2006), we can represent the joint density G() using a cop-
ula C(FX(x), FD(d), θ). Given a fitted copula with dependence parameter θ̂, we can compute
expected degree given a treatment status

E(di|x, θ̂) =
∫ 1

0
F−1
D (p(ud < Ud|FX(x)))dUd,

=

∫ 1

0
F−1
D (

∂C(ux, ud; θ̂)

∂ux
|ux=FX(x))dUd.

Therefore, the researcher can compute, for each i

E(
∑
j

bijxj |xj) =
∑
j

E(bij |xj , θ̂)xj ,
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allowing the researcher to compute η̂(θ̂).
This motivates a two-step estimator. In the first stage, the researcher estimates the copula

from the empirical distribution of network statistics on a set of M ≤ N observations by picking
the dependence parameter θ̂ that sets the score equal to zero

1

M

M∑
i=1

∂ lnCi(F
−1
x , F−1

G , θ)

∂θ
= 0.

Given a value θ̂, the researcher then estimates the unobserved spillovers from the copula

η̂(θ̂) =
1
N

∑
i(
∑

j hijxj)(
ˆ∑

j bijxj(θ))
1
N

∑
i(
∑

j hijxj)
2

.

and then constructs bias-corrected estimates as

β̂ =
β̂OLS

1 + η̂(θ̂)
.

This estimator is also consistent and asymptotically normal (Newey, 1984; Smith, 2003).14

Proposition 10. Make Assumptions 1A ,2,3, 5, A1. Define

(
h1(θ)

h2(θ, β)

)
=

(
1
M

∑M
i=1

∂ lnCi(F
−1
x ,F−1

G ,θ)
∂θ .

1
N

∑
i(
∑

j hijxj)(yi − (1 + η(θ))β(
∑

j hijxj))

)
.

(
K11 K12

K21 K22

)
= plim

1

N

∑
i

E

(
∂ lnCi(F

−1
x ,F−1

G ,θ)
∂θ 0

−∂η(θ)
∂θ β(

∑
j hijxj)

2 −(1 + η(θ))(
∑

j hijxj)
2

)
(
S11 S12

S21 S22

)
= plim

1

N

∑
i

E

(
h1ih

′
1i h2ih

′
1i

h2ih
′
1i h2ih

′
2i

)

β̂ is a consistent estimator of β. Furthermore,

√
N(β̂ − β) ∼ N(0,K−1

22 (S22 +K21K
−1
11 S11K

−1
11 K ′

21 −K21K
−1
11 S12 − S21K

−1
11 K ′

21)K
−1
22 ).

Of course, implementing this estimator requires that the researcher can fit the copula and
construct a link between the sampled degree statistic and the unobserved link weights. How the
researcher might implement this depends on the treatment assignment rule and the sampling
rule. For example, if the network is sampled using a fixed choice design, there exist some (low
degree) nodes where treatment status and in-degree are fully observed. The researcher can fit
the copula on this subset of individuals, under the assumption that the dependence between
treatment and degree is the same for low and high degree nodes.15 The dependence parameter

14This result can be complicated when the researcher also has to estimate the underlying distributions
that go into the copula. For a discussion of estimation issues and consistency here, see Choroś et al.
(2010).

15Then, the researcher may use a truncation invariant copula. See Nelsen (2006) for further discussion.
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of the copula is an aggregate statistic. So a data provider could disclose this from a full data
source without violating individual privacy. This approach is particularly suited for evaluating
a treatment is assigned by a planner through an assignment rule known to the researcher that
they can model through the copula. If the researcher is unsure how the degree statistic maps
onto the unsampled link weights, they could use the result to construct bounds on the estimated
spillover effect by sampling η under different assumptions.

Example – classroom setting, fixed choice sampling rule. Suppose that children are
assigned a continuous treatment, that we can describe with a marginal distribution xi ∼ N(5, 1).
In an effort to maximise the effect of the educational intervention, school administrators have
given larger doses to children the more friends that they have. Therefore, treatment status
depends upon the network structure – the child’s degree. The researcher samples friendships
using a fixed choice sampling design (asking them to name up to m friends) with m = 5.

The researcher observes the treatment status of each child, and their sampled number of
friends. To construct η̂, the researcher needs to estimate the number of expected treated friends
for each child with five sampled friends by fitting the copula. In the first step, the researcher
can fit the copula on the subsample of children whose degree and treatment are fully observed.
There are the children with fewer than five friends. Specifically, the researcher can model the
marginal distributions of child’s treatments and degrees as coupled through a bivariate Gumbel
copula

C(F−1
X (x), F−1

D (d); θ) = exp(−((− lnF−1
X (x))θ + (− lnF−1

D (d))θ)
1
θ )

where θ ∈ [1,∞] controls the degree of dependence between treatment and degree. Fitting
the copula gives an estimate of the dependence parameter θ̂. Then, we can use the fitted copula
to estimate η̂ using

∑
j

E(bij(xi, θ̂)|xj)xj =
∑
j

(E(g∗ij |xi, θ̂)−m)x̄.

To assess how well this strategy performs in finite sample, we provide simulation results for
this case in Appendix A.7.

5 Simulation experiments

Next, we evaluate the bias introduced by common sampling schemes and the performance of our
rescaled estimators by Monte-Carlo simulation. Standard regression estimators can be heavily
biased. The size of the bias depends on how much the sampling scheme alters the true network.
Bias-corrected estimators perform well in finite samples. The distribution of bias-corrected
estimates using η̂ is close to the distribution of bias-corrected estimates under the true η, which
is unbiased. In the appendix, we also simulate the performance of our estimator on real-life
economic network that has been completely sampled – the co-authorship network of economists
in Ductor et al. (2014).

21



5.1 Simulated networks

In each simulation, there are N = 1000 individuals who receive a binary treatment xi ∼
Bernoulli(0.3). In each case, outcomes are drawn from (2) with β = 0.8, ϵi ∼ N(0, 1). We
consider five networks and sampling schemes.

1. Fixed choice design. Each individual draws an in-degree from a discrete uniform dis-
tribution di ∼ U(1, 15).16 We form a binary directed simple network by connecting
each individual with others uniformly at random from the population. We then sample
links coming into each individual using a fixed choice design with reporting thresholds
m ∈ 1, ..., 14.

2. Sampling based on groups. Each individual belongs to a single group (e.g high school
class). There are 20 groups of 25 individuals, 10 groups of 20 individuals, and 20 groups of
15 individuals. The researcher samples each individual as linked to every other individual
in their group. True degrees are drawn U(mi − k,mi − 5 − k), where mi is their group
size and k ∈ {1, 2, 3, 4, 5}.

3. Link weight thresholds. Each individual draws interaction intensities with others from
wij ∼ LogNormal(1, 15).17 Then, we construct a weighted network where gij =

wij∑
k wik

.
We sample links where gij exceeds a threshold τ ∈ {0.025, 0.05, ..., 0.2}.

4. Fixed choice design with weights. Each individual draws an in-degree from a discrete
uniform distribution di ∼ U(1, 15). We form a weighted directed simple network connect-
ing individuals with others uniformly at random. Weights are gij =

1
di

– individuals who
have more friends allocate less weight to each friend. Therefore reported weighted degree
depends on number of friends. We then sample weighted links coming into each individual
using a fixed choice design with reporting thresholds m ∈ 1, ..., 14.

5. Sampling based on groups, true degree depends on group size. Each individual
belongs to one group (e.g high school class). There are 20 groups of 25 individuals, 10
groups of 20 individuals, and 20 groups of 15 individuals. The researcher samples each
individual as linked to every other individual in their group. Their degrees are drawn
U(25 − 3k, 20 − 3k), U(20 − 2k, 15 − 2k), U(15 − k, 10 − k) for each group respectively,
where k ∈ {1, 2, 3, 4, 5}.

In the first three cases, Assumption 4.a holds. In the final two cases, only Assumption 4.b
holds. In each case, we construct estimates of β

1. by regressing outcomes on spillovers on the sampled network (??),

16We use a uniform distribution and sample neighbours uniformly at random from the population
here to emphasise that the size of the bias that we find is not driven by tail behaviour of the degree
distribution or preferential attachment-type mechanisms. Similar results hold when node degrees are
sampled from more natural degree distributions like a discrete Pareto distribution (Clauset et al., 2009).

17The exact setting is calibrated similarly to the model of the US public-firm production network in
Herskovic et al. (2020).
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2. using the bias-corrected estimator given the true η (A-12), and

3. using the bias-corrected estimator estimating η̂ using the results from section 2.3.

We run 1000 simulations per estimator, and report average values across each simulation. Ad-
ditional experiments, including simulations for non-linear models and using the co-authorship
network of economists, are given in Appendix A.8.

Below, we compare mean estimates across simulations, and plot the distribution of a repre-
sentative set of estimates from each setting.

Simply regressing outcomes on sampled spillovers yields biased estimates. As expected,
estimates are too large when we sample a subset of the true links between individuals (cases 1,
3, and 4) and too small when we sample a superset (cases 2 and 5). Bias can be substantial.
For example, in the case of a fixed choice design sampling at most five links per individual (as
for within-gender friendships in the Ad-Health dataset Harris, 2009), the average spillover effect
estimates is 1.28 – 1.6 times the true effect. Thresholding links based at 10% of total flows
(similar to how supply links are sampled between U.S. public firms Atalay et al., 2011), gives
average spillover effect estimates of 1.63 – double the true effect.

Our bias-corrected estimators recover the true spillover effect well in finite samples. With
η known, estimators are almost always centered on the true spillover value. With η̂ estimated
under Assumption 4.a or Assumption 4.b, estimates are centered very close to the true value.
Bias-corrected estimators perform well when either assumptions hold, particularly under fixed
choice sampling designs (cases 1 and 4).

6 Propagation of climate shocks in production networks

As an example, we use our estimator to measure how climate shocks propagate across supply links
between public firms in the United States using self-reported supply relationships. Appendix
A.9, also considers peer effects in education (Carrell et al., 2013).

There is a consensus that a central effect of climate change is an increase in extreme weather
events (e.g see Robinson, 2021, and references therein). Whether these types of idiosyncratic
shocks propagate between firms matters for the effect of climate change on economic output
(Barrot and Sauvagnat, 2016). If firms can easily substitute away from suppliers hit by extreme
weather shocks, the impact remains limited to those suppliers. If, however, shocks propagates
from suppliers to customers, supply chains amplify the direct effect of these shocks (e.g see
Carvalho et al., 2020).

6.1 Balance-sheet and supply-chain data

Data on supply links between U.S. public firms come from the popular Compustat Supply Chain
dataset (Atalay et al., 2011). Since 1997, SFAS regulation No. 131 has required public firms
to report customers that account for more than 10% of sales in 10-K filings with the Securities
and Exchange Commission. Firms may report other customers voluntarily. Compustat collects
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Number sampled OLS η η̂

3 1.67 0.800 0.800
4 1.46 0.800 0.800
5 1.28 0.800 0.800
6 1.14 0.800 0.800
7 1.08 0.800 0.800
8 1.00 0.800 0.800
9 0.950 0.800 0.800
10 0.900 0.800 0.800

Table 1: Mean spillover estimates using
fixed choice design, by threshold

Figure 1: Distribution of spillover es-
timates using fixed choice design with
threshold of 5

k OLS η η̂

1 0.700 0.800 0.770
2 0.660 0.800 0.780
3 0.630 0.800 0.780
4 0.590 0.800 0.770
5 0.550 0.800 0.770

Table 2: Mean spillover estimates sam-
pling based on groups, by K

Figure 2: Distribution of spillover esti-
mates sampling based on groups, k = 3

Threshold OLS η η̂

0.200 1.90 0.800 0.780
0.175 1.92 0.810 0.750
0.150 1.78 0.800 0.730
0.120 1.63 0.790 0.710
0.100 1.54 0.810 0.710
0.075 1.46 0.820 0.710
0.050 1.36 0.800 0.690
0.025 1.31 0.810 0.690

Table 3: Spillover estimates using fixed
choice design, by threshold

Figure 3: Distribution of spillover es-
timates using fixed choice design with
threshold of 5
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Number sampled OLS η η̂

3 0.990 0.800 0.800
4 0.960 0.800 0.800
5 0.920 0.800 0.800
6 0.880 0.800 0.800
7 0.880 0.800 0.800
8 0.860 0.800 0.800
9 0.850 0.800 0.800
10 0.830 0.800 0.800

Table 4: Mean spillover estimates from a
fixed choice design with weights, by num-
ber sampled

Figure 4: Distribution of spillover es-
timates using fixed choice design with
threshold of 5

k OLS η η̂

1 0.650 0.800 0.780
2 0.560 0.800 0.770
3 0.470 0.800 0.760
4 0.380 0.800 0.730
5 0.290 0.800 0.710

Table 5: Mean spillover estimates sam-
pling based on groups when true degree
depends on group size, by k

Figure 5: Distribution of spillover es-
timates using fixed choice design with
threshold of 5
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all of these self-reported links, which are understood to be a subset of the true supply links
(Herskovic et al., 2020; Bacilieri et al., 2023).18 In 2017 , the mean number of reported suppliers
in is 1.36, and the median is 0.00. This is far fewer than researchers see in complete transactions
data, and is an example where researchers can only sample high-weight links.19 As described
earlier, this sampling scheme satisfies Assumption 4.a.20 So, we can construct rescaled estimates
based on the mean missing degree amongst firms with at least one missing link. We use the
mean degree of the (more complete) Factset production network in (Bacilieri et al., 2023), and
value accounting for truncation in Herskovic et al. (2020). The resulting values are 2.7, 2.56,
corresponding to a mean missing degree of dB = 1.2, 1.34.

Firm-level balance-sheet information for 1711 U.S. public firms in 2017 comes from the Com-
pustat Fundamentals Quarterly North America dataset. Continuous variables are winsorized at
the 99th and 1st percentiles. As firms may relocate headquarters, we locate firms using addresses
reported in their 10-K forms instead of the location reported in Compustat (Gao et al., 2021).

6.2 Climate shocks

To determine which firms receive weather shocks, we construct a dataset of the county-level
incidence of severe weather events in the United States 2004-2019.21 Events comes from the US
National Oceanic and Atmospheric Administration Billion-Dollar Weather and Climate Disasters
project, which lists all weather events causing over $1 billion in damages (2024 dollars) between
1980 and 2024.22 We match each weather event to county-level emergency declarations from the
Federal Emergency Management Agency.

A county is coded as affected by a disaster if is in a state affected by the disaster and they
have declared a state of emergency from that type of natural disaster (e.g a flood, a storm) in
the days around the event given by the US National Oceanic and Atmospheric Administration.
This yields a dataset of each county affected by a ‘billion-dollar’ natural disaster by month.

Table 1. lists the extreme weather events in the United States in 2017. There are six disasters
in our dataset within this year: three hurricanes, two outbreaks of tornadoes, and one case of
significant flooding. They affect firms in nine states over five months of the year. Total estimated
damages range between $1.2 billion and $160 billion per disaster.

18Before the introduction of the regulation in 1997, firms would self-report certain customers. Some
firms also report additional customers. For more details, see Bacilieri et al. (2023).

19For example, the mean number of suppliers in Belgian production network data is ≈ 30 (Dhyne et al.,
2021), in Chilean data is ≈ 20 (Hunneus, 2020), and in Ecuadorian data is ≈ 33 (Bacilieri et al., 2023).
The degree distribution is shifted to the left compared to true networks from VAT data, that shows
similar patterns across countries (Bacilieri et al., 2023). Furthermore, Bacilieri et al. (2023) analyse a
larger sample of self-reported network from 2012-2013, and find that 27 percent of firms have no listed
suppliers, and 30 percent have no listed customers. The high amount of isolated firms suggests that some
paths between firms are missing entirely.

20As in Barrot and Sauvagnat (2016), we treat the underlying network as binary. Further research
could account for the effect of weights.

21The dataset is available on request.
22See https://www.ncei.noaa.gov/access/billions
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Following Barrot and Sauvagnat (2016), a firm is classified as hit by a shock in a given
quarter if it is headquartered in a county affected by the disaster in that quarter. 14.9% of firms
are hit with at least one weather shock within the year, and 11.3% have at least one reported
supplier affected. There is strong evidence that firms do not choose suppliers based on the
distribution of weather shocks across space (Barrot and Sauvagnat, 2016). So we can treat the
distribution of these shocks as independent of the distribution of supply links between firms.

6.3 Estimation

We estimate the effect of an additional shock to a firm’s supplier over a year on that year’s sales
growth, accounting for shocks to the firm itself, using the regression model

∆ ln Salesit,t−4 = α+ β1
∑
j

hijShockedjt,t−4 + β2Shockedt,t−4 +Xγ + ϵi.

We construct bias-corrected estimates of β1 using the estimator (7) under the assumption
that missingness is independent of controls.

Table 7: Estimates of propagation of climate shocks between US public firms over 2017

∆ ln Sales

Estimator OLS OLS Rescaled (Factset) Rescaled (Herskovic et al.)

Suppliers shocked −0.00675 −0.0248 −0.0140 −0.0132

(0.00303) (0.0114) (0.01) (0.01)

Shocked 0.0460 0.0650 0.0650 0.0650

(0.0464) (0.0608) (0.0608) (0.0608)

Size Yes Yes Yes Yes
Industry Fixed Effects No Yes Yes Yes
State Fixed Effects No Yes Yes Yes

Obs 1711 1243 1243 1243

R2 0.001 0.103 0.103 0.103

Notes: Standard errors for non-rescaled estimates clustered by county (the level of shock assignment).
Standard errors for rescaled estimates bootstrapped with 10000 draws. Firm-level controls are size
(ppentq) and industry (4-digit NAICS fixed effects).

Table 7 reports results. In line with the existing literature (Barrot and Sauvagnat, 2016),
the uncorrected estimate suggests that a shock to an additional supplier within the year leads
to a 2.48% fall in yearly sales growth. After bias-correction, spillover effects are 53-56% of
the initial estimates. Almost half of the naive spillover effect appears to come from bias due
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to measurement error in links. We cannot reject the null hypothesis that spillover are zero at
standard significance levels. Looking at robustness of the estimates to sampling bias using (8)
suggests that estimates are very sensitive to missing links. Estimates fall to less than a 1.5%

percent drop in yearly sales growth if we are missing at least one link on average, and a 1%

fall if we are missing at least 2.25 links on average. Economically, these results may reflect the
short duration of most weather shocks. Customers may be able to smooth out these short-term
disruptions using inventories. We would expect the effects of these types of shocks to be smaller
than those of larger natural disasters that cause long term disruption (e.g Carvalho et al., 2020).

7 Conclusion

We first show that sampling links between individuals can lead to substantial, economically
significant bias in spillover estimates from linear and nonlinear models. Unlike classical mea-
surement error, which generates downward bias, sampling can create either upward or downward
bias depending on the scheme. Simulations demonstrate that popular sampling schemes lead to
economically significant biases in estimates.

To solve this, we introduce bias-corrected estimators that rescale linear and nonlinear re-
gressions to account for dependence between spillovers on observed and unobserved links. In
experimental and quasi-experimental settings, researchers can implement these estimators using
only aggregate statistics of the degree distribution, which are relatively easy to sample. Our
estimators perform well in simulations. To illustrate, we estimate the propagation of climate
shocks among US public firms in 2017 using sampled supply links.

For tractability, we rely on the linearity of the estimators in the sampled and unsampled
networks for our results. Applied economists commonly fit complex structural models to sampled
network data where parameters are non-linear functions of sampled networks (Badev, 2021;
Lim, 2024, e.g see). Future work could extend our results to moment-based estimators in these
settings. Our findings underscore that careful treatment of network sampling is essential for
credible empirical estimates of spillovers.
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Appendix

A1 Proofs

We make the following standard assumptions for asymptotic results (Cameron and Trivedi, 2005)

Assumption 6. The matrix with entries plim 1
N

∑
i ϵ

2
i

∑
j gijxj

∑
j gkjxj exists and is finite

positive definite. Furthermore

plim
1

N

∑
i

(
∑
j

hijxj)
2 = E((

∑
j

hijxj)
2)

plim
1

N

∑
i

(
∑
j

hijxj)(
∑
j

bijxj) = E((
∑
j

hijxj)(
∑
j

bijxj)),

∃δ > 0 s.t E(|
∑
j

gijxj
∑
j

gkjxj |1+δ) ≤ ∞ ∀k, i

∃δ > 0 s.t E(|ϵ2i |1+δ) ≤ ∞ ∀k, i

∃δ > 0 s.t E(|ϵ2i
∑
j

gijxj
∑
j

gkjxj |1+δ) ≤ ∞ ∀k, i

Note that these may fail if the network has a degree distribution that is heavy tailed (see
Newman, 2010). Examples include a power-law degree distribution. We do not address this,
as this is separate to the focus of this paper. In this setting, estimation of spillover effects by
regression models would need further justification in general.

Here, we also note that there are edge cases where linear regression estimator for the spillover
effects are not identified in the limit when a researcher includes covariates or an intercept. In
the case where gij = 1

di
∀i, j and di = dj∀i, j i.e all individuals have the same degree and

weight all contacts equally, the spillover effect will become colinear with the intercept in the
asymptotic limit (and similar for any cases where the spillovers become colinear with a covariate
in expectation). These, however, are not relevant cases, as in these cases it does not make sense
for the researcher to use a regression estimator with covariates in general. So, we do not discuss
these further.

Proof of proposition 1

Proof. We derive the form of the bias function first. Using (2), (4) we get

β̂OLS =
1
N

∑
i(
∑

j hijxj)yi
1
N

∑
i(
∑

j hijxj)
2

=
1
N

∑
i(
∑

j hijxj)(β(
∑

j hijxj +
∑

j bijxj) + ϵi)
1
N

∑
i(
∑

j hijxj)
2

= β
(
1 +

1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
+

1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2
.

To show that this does cause bias, take expectations
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E(β̂OLS) = βE
(
1 +

1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
+ E

( 1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2

)
.

= β + βE
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
+ E

( 1
N

∑
i(
∑

j hijxj)
1
N

∑
i(
∑

j hijxj)
2
E(ϵi|

∑
i

hijxj)
)
.

Under assumption 2

E(ϵi|
∑
i

hijxj) = E(ϵi)

= 0.

By assumption,

E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
̸= 0.

The proposition follows.

Proof of proposition 2

Proof.

E
( 1

N

∑
i

(
∑
j

hijxj)(
∑
j

bijxj)
)
=

1

N

∑
i

E
(
(
∑
j

hijxj)(
∑
j

bijxj)
)

by linearity of E(),

=
1

N

∑
i

(
p(i /∈ B)E

(
(
∑
j

hijxj)(
∑
j

bijxj)|i /∈ B
)
,

+ p(i ∈ B)E
(
(
∑
j

hijxj)(
∑
j

bijxj)|i ∈ B
))

splitting those with no incorrectly sampled links,

=
1

N

∑
i

(
0 + p(i ∈ B)E

(
(
∑
j

hijxj)(
∑
j

bijxj)|i ∈ B
))

=
1

N

∑
i

p(i ∈ B)(E(x)2E((
∑
j

hij)(
∑
j

bij)|i ∈ B
))

under assumption 1,

=
1

N

∑
i

p(i ∈ B)(E(x)2E((
∑
j

hij)E(
∑
j

bij |
∑
j

hij)|i ∈ B
))

conditioning,

=
1

N

∑
i

p(i ∈ B)(E(x)2E(dHi E(dBi |dHi )|i ∈ B
))

.

We look for the cases when this term is non-zero. Assume that E(x) ̸= 0, and p(i ∈ B) ̸= 0.
Then, it is equivalent to

∑
i

E
(
dHi E(dBi |dHi )|i ∈ B

)
̸= 0.

Assume that dHi has the same sign for each i. Then a sufficient condition for this to be
non-zero is that E(dBi |dHi ) is either non-negative or non-positive for each i such that i ∈ B.
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Proof of theorem 1 Here, we introduce a (somewhat trivial) theorem proving that our
theoretical bias-corrected estimator with the true rescaling factor is unbiased and consistent.
We introduce it to use this in the subsequent proofs.

Theorem 1. Define η = E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)
. Make Assumptions 1-A, 2, 3. The esti-

mator

β̂ =
β̂OLS

1 + η
(A-12)

is an unbiased and consistent estimator of β i.e E(β̂) = β, and β̂
p−→ β.

Proof.

E(β̂) = E(
β̂OLS

1 + η
)

=
1

1 + E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)E(β̂OLS)

=
1

1 + E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)E(β(1 + E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

))
+

1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2

)
(prop 1),

= β + E
( 1

N

∑
i(
∑

j hijxj)ϵi

( 1
N

∑
i(
∑

j hijxj)
2)(1 + E

( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)
)

)
= β + 0 from assumption 2.

Now, we prove consistency.

Proof. Our estimator is

β̂ =
1

1 + E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)(β(1+( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

))
+

1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2

)
.

First, consider the term

plim
1

1 + E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)β(1 + ( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

))

Then, applying Slutsky’s lemma

plimβ
(
1 +

( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

))
= β + β

E((
∑

j hijxj)(
∑

j bijxj))

E((
∑

j hijxj)
2)

.
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Consider the Taylor expansion of E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)
around E((

∑
j hijxj)

2), E((
∑

j hijxj)(
∑

j bijxj))

E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
=

E( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj))

E( 1
N

∑
i(
∑

j hijxj)
2)

−
Cov( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj),
1
N

∑
i(
∑

j hijxj)
2)

(E( 1
N

∑
i(
∑

j hijxj)
2))2

+
Var( 1

N

∑
i(
∑

j hijxj)
2)

E(( 1
N

∑
i(
∑

j hijxj)
2)3)

+ ...,

From assumption 6, Var( 1
N

∑
i(
∑

j hijxj)
2) → 0, and Cov( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj),
1
N

∑
i(
∑

j hijxj)
2) →

0. Therefore

plimE
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
=

E((
∑

j hijxj)(
∑

j bijxj))

E((
∑

j hijxj)
2)

.

Combining these results, we have that

plim
1

1 + E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

)β(1 + ( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

))
= β.

Next, consider the second term

plim
1

1 + E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

) 1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2
.

Under assumptions 1,2

plim
1

N

∑
i

(
∑
j

hijxj)ϵi = 0.

Again applying Slutksy’s lemma plus assumption A1 gives

plim
1

1 + E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)2

) 1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2
= 0.

Combining our two intermediate results by Slutsky’s lemma gives

plim β̂ = β + 0.
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A1.1 Proofs of proposition 3

Proof. As before

η = E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
First, we want to show that we can approximate

E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
≈

E( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj))

E( 1
N

∑
i(
∑

j hijxj)
2)

.

From taking the Taylor expansion of this fraction around the point µA, µB, we can in general
evaluate (Billingsley, 2012)

E
(A
B

)
=

µA

µB
− Cov(A,B)

µ2
B

+
Var(B)µA

µ3
B

+∆.

Substituting

A =
1

N

∑
i

(
∑
j

hijxj)(
∑
j

bijxj),

B =
1

N

∑
i

(
∑
j

hijxj)
2,

and solving gives

E
( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
i(
∑

j hijxj)
2

)
=

E( 1
N

∑
i(
∑

j hijxj)(
∑

j bijxj))

E( 1
N

∑
i(
∑

j hijxj)
2)

−
Cov( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj),
1
N

∑
i(
∑

j hijxj)
2)

(E( 1
N

∑
i(
∑

j hijxj)
2))2

+
Var( 1

N

∑
i(
∑

j hijxj)
2)

E(( 1
N

∑
i(
∑

j hijxj)
2)3)

+ ...,

=
E( 1

N

∑
i(
∑

j hijxj)(
∑

j bijxj))

E( 1
N

∑
i(
∑

j hijxj)
2)

+O
( 1

(
∑

i

∑
j hijxj)

4

)
.

where we disregard the final terms as they are vanishingly small. Next, we want to evaluate
the top given that we do not observe B.

As in the proof of proposition 2, we can write

E(
1

N

∑
i

(
∑
j

hijxj)(
∑
j

bijxj)) =
1

N

∑
i

p(i ∈ B)(E(x)2E(dHi E(dBi |dHi )|i ∈ B).

Now, applying assumption 4a,

E(dHi E(dBi |dHi )|i ∈ B) = E(dHi |i ∈ B)E(dBi |i ∈ B)

Substituting back in, we have
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E(
1

N

∑
i

(
∑
j

hijxj)(
∑
j

bijxj)) =
1

N

∑
i

p(i ∈ B)(E(x)2E(dHi |i ∈ B)E(dBi |i ∈ B).

Substituting in the sample analogues and then applying Theorem 1 gives the results.

A1.2 Proof of proposition 4

Proof. From the proof of proposition 3,

E(
1

N

∑
i

(
∑
j

hijxj)(
∑
j

bijxj)) =
1

N

∑
i

p(i ∈ B)(E(x)2E(dHi E(dBi |dHi )|i ∈ B).

From assumption 4b

E(dHi E(dBi |dHi )|i ∈ B) = E(dHi E(di|dH = dHi )− dHi |i ∈ B)

= E(dHi E(dBi |dH = dHi )|i ∈ B).

Substituting in the sample analogues and then applying Theorem 1 gives the results.

A1.3 Proofs of proposition 5, 10

Proof. We first now derive the asymptotic distribution of the estimator when η is known.
As in proof of prop 1., we have

β̂OLS

1 + η
=

1

1 + η

(
β(1 + η) +

1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2

)
,

= β +
1

1 + η

( 1
N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2

)
.

Define the matrices

MXX = plim
1

N

∑
i

(
∑
j

hijxj)
2

MXΩX = plim
1

N

∑
i

(
∑
j

hijxj)(
∑
j

hijxj)ϵ
2
i

Under the maintained assumptions, we can apply the standard proof of the asymptotic
distribution of the OLS estimator from Cameron and Trivedi (2005). This yields

√
N
( 1

N

∑
i(
∑

j hijxj)ϵi
1
N

∑
i(
∑

j hijxj)
2

)
∼ N(0,M−1

XXMXΩXM−1
XX).

Now, applying the normal product rule, we get
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√
N
( β̂OLS

1 + η
− β

)
∼ N(0, (

1

1 + η
)2M−1

XXMXΩXM−1
XX).

Now, to prove proposition 5, note that we can write our estimator as a two-step M estimator
(Newey, 1984).

(
h1(θ)

h2(θ, β)

)
=

(
θ − 1

N

∑N
i=1 θi

1
N

∑
i(
∑

j hijxj)(yi − (1 + η(θ))β(
∑

j hijxj))

)
,

=

(
0

0

)
.

Define

(
K11 K12

K21 K22

)
= plim

1

N

∑
i

E

(
−1 0

−∂η(θ)
∂θ β(

∑
j hijxj)

2 −(1 + η(θ))(
∑

j hijxj)
2

)
(
S11 S12

S21 S22

)
= plim

1

N

∑
i

E

(
h1ih

′
1i h2ih

′
1i

h2ih
′
1i h2ih

′
2i

)

Assume that

1√
N

∑
i

h1i(η)
d−→ N(0, S11(η)),

1√
N

∑
i

h2i(η, β)
d−→ N(0, S22(η, β)).

We have just shown the second. Assume the first. Then, applying the results in Newey
(1984), we know that therefore

Ω = Var(β̂) = K−1
22 (S22 +K21K

−1
11 S11K

−1
11 K ′

21 −K21K
−1
11 S12 − S21K

−1
11 K ′

21)K
−1
22 , (A-13)

and

√
N(β̂ − β) = N(0,Ω).

Proposition 11 follows by the same logic by noting that our estimates for the copula param-
eters will also satisfy the assumptions for applying the two-step M estimator under standard
regularity conditions - see Smith (2003); Choroś et al. (2010) and references therein.
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A1.4 Proof of proposition 6

Proposition 7 follows by simply rearranging

β̂OLS

1 + η
> τ

for β̂OLS.
Results for the non-linear social network model are presented in a separate section later

A2 Alternative approximations for the rescaling factor

As noted in the main text, the first order expansion of the rescaling factor performs well in finite
sample in our simulation experiments. Therefore, though we have no analytic guarantee of how
close the first order approximation is to the true rescaling factor, we should expect it to be close.
In cases where a researcher doubts the performance of the first order approximation, however,
we provide two alterative methods to compute the rescaling factor.

The first is a second-order expansion

E(
1
N

∑
i(
∑

j hijxj)(
∑

j bijxj)
1
N

∑
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∑
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) ≈
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∑
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∑
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∑

j bijxj))

E( 1
N

∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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2)2

)
.

To compute the expansion, we need to evaluate the terms in the brackets. Denote

Sh =
∑
i

hijxj ,

Sb =
∑
i

bijxj .

Then

−
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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= −
1
N4dhE(x)

(
E(S7

b )− E(S3
b )E(S4

b )
)

1
N2dhE(x)E(Sb)E(S2

b )
,

= −
1
N2

(
E(S7

b )− E(S3
b )E(S4

b )
)

E(Sb)E(S2
b )

.
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∑
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2

E(S2
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2

=
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− 1.
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Therefore,

1−
Cov( 1

N

∑
i(
∑

j hijxj)(
∑
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1
N

∑
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j hijxj)
2)

E( 1
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∑
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∑
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∑

j bijxj))E( 1
N

∑
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∑
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2)

+
Var( 1

N

∑
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∑

j hijxj)
2)

E( 1
N

∑
i(
∑
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2)2

=
1

N2

E(S3
b )E(S4

b )− E(S7
b )

E(Sb)E(S2
b )

+
E(S4

h)

E(S2
h)

2
.

The second method for computing η̂ is by simulation. In this case, the researcher first
constructs M possible matrices of missing links {B(m)}Mm=1 based on either the number of total
missing links, or the number of missing links by individual. Then, we can estimate

η̂M =
1

M

∑
m

1
N

∑
i(
∑

j hijxj
∑

j b
(k)
ij xj)

1
N

∑
i(
∑

j hijxj)
2

.

The bias-corrected estimator is then

β̂ =
β̂OLS

1 + η̂M
.

Then, the researcher must compute the variance of the estimator using a bootstrap.

A3 Detailed example with fixed choice design

Example – fixed choice design. To fix ideas, consider the case of a binary network hij , bij ∈
{0, 1} where xj = 1 ∀j. The logic extends to the more general case without loss of generality.

The researcher samples up to m links into each individual. For illustration, let m = 5 (as
for same-sex friends in the Ad Health dataset Harris, 2009). If an individual has five or fewer
connections, the researcher samples all of their connections. Sampled spillovers equal observed
spillovers. If an individual has more than five connections, the researcher does not sample some
of their spillovers. So they have some positive unobserved spillovers. As they have the maxi-
mum number of sampled links, their spillovers are also higher. Individuals with more than five
links have a sampled spillover of 5, greater than or equal to individuals with five or fewer friends
(whose spillovers are in {0, 1, 2, 3, 4, 5}). Thus, sampling based on generates positive dependence
between observed and unobserved spillovers.

Formally, we can derive the expected dependence between observed and unobserved spillovers
under a fixed choice design as:
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E
( 1

N

∑
i

(
∑
j

hijxj)(
∑
j

bijxj)
)
=

1

N

∑
i

E
(
(
∑
j

hijxj)(
∑
j

bijxj)
)

by linearity of E(),

=
1

N

∑
i

(p(di ≤ m)E
(
(
∑
j

hijxj)(
∑
j

bijxj)|di ≤ m
)
,

+ (1− p(di ≤ m))E
(
(
∑
j

hijxj)(
∑
j

bijxj)|di > m
)
),

=
1

N

∑
i

(1− p(di ≤ m))E
(
(
∑
j

hijxj)(
∑
j

bijxj)|di > m
)

as bij = 0∀j if di ≤ m,

=
1

N

∑
i

(1− p(di ≤ m))mE(di −m|di > m) from the sampling rule,

=
1

N

∑
i

(1− p(di ≤ m))m(E(di|di > m)−m) > 0.

Therefore, under this sampling design, estimates are upwards biased (|β̂OLS|> |β|).

A4 Extension to models with covariates

Here, we derive our results in matrix notation to allow for arbitrary covariates. This allows us
to extend the results to general linear regression models, and regression models for panel data.
Let

Z =

(
Hx

W

)
.

Our model in matrix form is

y =

(
Gx

W

)′(
β

γ

)
+ ϵ. (A-14)

The OLS estimator solves (
β̂ OLS

γ̂ OLS

)
= (Z ′Z)−1Z ′y

Solving yields

γ̂OLS = (W ′(I − PHx)W )−1W ′(I − PHx)y,

β̂OLS = ((Hx)′(I − PW )Hx)−1(Hx)′(I − PW )y.

Let (
∼
A) denote (I − PW )A. For readability, write

β̂OLS = ((
∼
Hx)′

∼
Hx)−1(

∼
Hx)′

∼
y.
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Substituting (A-14) for y ,

β̂OLS = β + ((
∼
Hx)′

∼
Hx)−1(

∼
Hx)′(

∼
Bxβ +

∼
ϵ).

Taking expectations

E(β̂OLS) = (I + E((
∼
Hx)′

∼
Hx)−1(

∼
Hx)′

∼
Bx)β.

Therefore the multiplicative bias is

E((
∼
Hx)′

∼
Hx)−1(

∼
Hx)′

∼
Bx).

Equivalents of proposition 1, theorem 1 follow immediately.
Under the same Taylor approximation as in the proof of proposition 4,

E(((
∼
Hx)′

∼
Hx)−1(

∼
Hx)′

∼
Bx) ≈ E(((

∼
Hx)′

∼
Hx)−1)E((

∼
Hx)′

∼
Bx),

giving the results in section 2.4 for the mean degree of the sampled network projected onto the
orthogonal complement of the space of the column space of covariates W and the mean number
of missing links after projection onto the orthogonal complement of the space of the column
space of covariates W .

If we further assume that measurement errors and spillovers are distributed indepedently of
covariates throughout

Bx,Gx ⊥⊥ W

then the results in section 2.4 apply identically.
In practice, it is important to consider whether this assumption holds or not before bias-

correcting the estimator. If it does not, the researcher needs to apply the results using

∼
dH =

1∑
i∈B 1i

∑
i∈B,j

∼
hij

∼
dB =

1∑
i∈B 1i

∑
i∈B,j

∼
b ij .

In practice, the researchers could construct these by regressing reported number of links/missing
links on covariates amongst all individuals, removing the expectation given the covariates for all
individuals, and then taking the mean for individuals with at least some missing links.

We brush over it in the main text for reasons similar to Battaglia et al. (2025) – considering
it directly dilutes the main point of the paper.

In certain cases, including controls can lead to E(
∼
Bx) = 0. In this case, the linear regression

estimator is not biased, and correction would be erroneous. Our approach gives a transparent
way to see when adding controls will also account for measurement error. An example is a panel
data regression with individual fixed effects with constant sampling error by node. In this case
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∼
BXit = (dBit − d̄Bi )E(X)

= (dBit − dBit )E(X)

= 0

as by construction dBit = d̄Bi .

A5 Dummy variable estimators

Again, assume that we can describe the underlying data generating process with (2). Instead of
estimating the direct spillover effect β, the researcher wants to estimate the average effect of at
least one neighbour being treated on outcomes23

γ = E(β
∑
j

gijxj |
∑
j

gijxj > 0).

For example, the researcher wants to estimate the effect of at least one supplier experiencing
a shock on sales (Barrot and Sauvagnat, 2016). A common estimation strategy is to construct
a dummy variable that encodes whether at least one sampled neighbour is treated

di =

1 if and only if
∑

j hijxj ≥ 1

0 else

and regress on outcomes on this dummy plus an intercept (e.g specifications in Oster and
Thornton, 2012; Barrot and Sauvagnat, 2016) 24 By splitting spillovers into observed and unob-
served components, we see that this estimator recovers (Angrist and Pischke, 2009)

γ̂ OLS = E(β
∑
j

gijxj |
∑
j

hijxj > 0)− E(β
∑
j

gijxj |
∑
j

hijxj = 0)

̸= E(β
∑
j

gijxj |
∑
j

gijxj > 0).

where the second term may be non-zero.
Again, we can construct an unbiased estimator by rescaling based on the mean number of

missing links on the network.

Proposition 11. Make assumptions 1,2,3. Consider the estimator

γ̂ =

E(dHi )+E(dBi )
p(
∑

j gijxj>0)

E(dHi )
p(
∑

j hijxj>0)) + E(dBi |
∑

j hijxj > 0)− E(dBi |
∑

j hijxj = 0)
γ̂ OLS.

23Note that this is a different estimand to the spillover effect β, though the two are sometimes conflated
(Barrot and Sauvagnat, 2016). Different degree distributions of the true underlying network can deliver
different γ for the same β.

24We omit controls here without loss of generality.
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γ̂ is an unbiased estimator of γ.

Proof

Proof. By definition,

γ =
γ

γ̂ OLS γ̂
OLS.

Therefore, γ

γ̂ OLS γ̂
OLS is an unbiased estimator of γ.

Now, we simplify this fraction. Given that outcomes follow (2),

γ = E(
∑
j

gijxj + ϵi|
∑
j

gijxj > 0)− E(
∑
j

gijxj + ϵi|
∑
j

gijxj = 0)

= E(
∑
j

gijxj |
∑
j

gijxj > 0) + E(ϵi|
∑
j

gijxj > 0)− E(ϵi|
∑
j

gijxj = 0),

= E(
∑
j

gijxj |
∑
j

gijxj > 0) by assumption 2,

=
E(
∑

j gijxj)

p(
∑

j gijxj > 0)

=
E(x)E(

∑
j hij +

∑
j bij)

p(
∑

j gijxj > 0)
by assumption 1

=
E(x)E(dHi + dBi
p(
∑

j gijxj > 0)

= βE(x)
(E(dHi ) + E(dBi ))

p(
∑

j gijxj > 0)
.

Similarly

γ̂ OLS = E(β
∑
j

gijxj + ϵi|
∑
j

hijxj > 0)− E(β
∑
j

gijxj + ϵi|
∑
j

hijxj = 0)

= E(β
∑
j

gijxj |
∑
j

hijxj > 0)− E(β
∑
j

gijxj |
∑
j

hijxj = 0) + E(ϵi|
∑
j

hijxj > 0)− E(ϵi|
∑
j

hijxj = 0),

= β(E(
∑
j

hijxj +
∑
j

bijxj |
∑
j

hijxj > 0)− E(hijxj +
∑
j

bijxj |
∑
j

hijxj = 0)),

= β(E(
∑
j

hijxj |
∑
j

hijxj > 0) + E(
∑
j

bijxj |
∑
j

hijxj > 0)− E(
∑
j

bijxj |
∑
j

hijxj = 0))

= βE(x)(E(
∑
j

hij |
∑
j

hijxj > 0) + E(
∑
j

bij |
∑
j

hijxj > 0)− E(
∑
j

bij |
∑
j

hijxj = 0)) by assumption 1,

= βE(x)
( E(

∑
j hij)

p(
∑

j hijxj > 0))
+ E(

∑
j

bij |
∑
j

hijxj > 0)− E(
∑
j

bij |
∑
j

hijxj = 0)
)

by assumption 1,

= βE(x)
( E(dHi )

p(
∑

j hijxj > 0))
+ E(dBi |

∑
j

hijxj > 0)− E(dBi |
∑
j

hijxj = 0)
)

Therefore
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γ =
γ

γ̂ OLS γ̂
OLS,

=
βE(x)

(E(dHi )+E(dBi ))
p(
∑

j gijxj>0)

βE(x)
(

E(dHi )
p(
∑

j hijxj>0)) + E(dBi |
∑

j hijxj > 0)− E(dBi |
∑

j hijxj = 0)
) γ̂ OLS

=

E(dHi )+E(dBi )
p(
∑

j gijxj>0)

E(dHi )
p(
∑

j hijxj>0)) + E(dBi |
∑

j hijxj > 0)− E(dBi |
∑

j hijxj = 0)
γ̂ OLS.

Sample analogues for E(dHi ),
E(dHi )

p(
∑

j hijxj>0)) are directly computable from observed H,x. The
other missing terms – the expected number of unobserved links, and difference in the the expected
number of unobserved links between individuals with at least one sampled treated neighbour
and individuals with no sampled treated neighbours – are again aggregate network statistics.
The researchers can construct sample analogues for the other terms. They can do this by asking
each individual how many connections they have in a survey, disclosed by data providers without
violating privacy, or approximated from detailed sampling of similar datasets.

A6 Equivalence to control function approach

Writing out our data-generating process again, we have that

yi = β
∑
j

gijxj + ϵi

= β
∑
j

hijxj + ξi

where

ξi =
∑
j

bijxjβ + ϵi.

A model for the error under assumption 1 is

E(ξi) = dBi E(xj).

The resulting regression model would be

yi = β
∑
j

gijxj + γdBi E(xj).

which gives the same regression estimator as in the main text. Of course, this requires
knowing which individuals have at least some incorrectly sampled links. Thus, it is only imple-
mentable for a subset of the sampling schemes used to study economic networks (e.g fixed choice
designs, but not assuming that all individuals in the same group are connected).
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A7 Results for non-linear social network models

Make the standard assumptions (Kelejian and Prucha, 1998; Bramoullé et al., 2009; Blume et al.,
2015).

Assumption A2 Assume that

1. (y,G,B, x) are independently but not identically distributed over i,

2. E(ϵ|G, x) = 0

3. ϵ are independent and not identically distributed over i such that for some δ > 0E(|u2i |1+δ) <

∞ with conditional variance matrix

E(ϵϵ′|(G−B)x) = Ω

which is diagonal.

4.

plim N−1z′PJ∗z = QZZ

plim N−1z′PJ∗zB = QZB

plim N−1z′PJ∗ = QHJ

which are each finite nonsingular.

5. |λ|< 1
||H|| ,

1
||G|| for any matrix norm ||.||.

The estimator for non-linear social network models given in Section 3 is consistent and
asymptotically normal.

Theorem 2. Consider the debiased estimator θ̂, and make assumption A7. Then plim θ̂ = θ

and

1√
N

(θ̂ − θ)
d−→ N (0, N(0, σ2(I +Q−1

ZZQZB)
−1Q−1

ZZQHJ((I +Q−1
ZZQZB)

−1Q−1
ZZ)

′),

where

plim N−1Z ′PJ∗Z = QZZ

plim N−1Z ′PJ∗ZB = QZB

plim N−1Z ′PJ∗ = QHJ

Proof. Let z∗ =
(
Gy, x

)
, z =

(
Hy, x

)
. Call zB = z∗ − z =

(
By, 0

)
. Finally, denote the

projection matrix onto the space spanned by our instruments PJ∗ = J∗(J∗′J∗)−1J∗′ .
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Our two-stage least squares estimates with our unbiased instruments J∗ are

θ̂2sls = ((PJ∗z)
′PJ∗z)

−1(PJ∗z)
′y,

= ((PJ∗z)
′PJ∗z)

−1(PJ∗z)
′(z∗θ + ϵ)

= (z′PJ∗z)
−1(PJ∗z)

′(zθ + zBθ + ϵ)

= θ + ((z′PJ∗z)
−1(PJ∗z)

′zBθ + (z′PJ∗z)
−1(PJ∗z)

′ϵ.

Therefore,

θ̂ = (I + (z′PJ∗z)
−1(z′PJ∗zB))

−1θ̂2sls = θ + (I + (z′PJ∗z)
−1z′PJ∗zB)

−1(z′PJ∗z)
−1(PJ∗z)

′ϵ.

Note that

z′PJ∗zB =

(
0 (Hy)′PJ∗By

0 x′PJ∗By

)
.

First, we show the consistency of this estimator. As per assumption A7

plim N−1z′PJ∗z = QZZ

plim N−1z′PJ∗zB = QZB

plim N−1z′PJ∗ = QHJ

which are each finite nonsingular.
Therefore

plim θ̂ = plim (θ + (I + (N−1z′PJ∗z)
−1N−1z′PJ∗zB)

−1(N−1z′PJ∗z)
−1(N−1PJ∗z)

′ϵ)

= θ + (I +Q−1
ZZQZB)

−1Q−1
ZZplimN−1z′PJ∗ϵ by Slutsky’s lemma

Finally, we need to characterise the properties of

plimN−1z′PJ∗ϵ.

N−1z′PJ∗ =

(
N−1(PJ∗Gy)′ϵ

N−1(PJ∗x)
′ϵ

)
.

We can characterise the behaviour of the second row using a standard weak law of large
numbers. But, the vector Gy involves a sum of random variables y. So, here, we need to apply
a law of large numbers for triangular arrays. From assumption A7, it follows that the array
G1,1y1, G1,2y2, ... is a triangular array (Kelejian and Prucha, 1998). So, the term GY )′ϵ is the
sum of
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(G1,1y1, G1,2y2, ...)ϵ1 + (G2,1y1, G2,2y2, ...)ϵ2 + ...

which is itself a triangular array. Call this triangular array W . Assume that supNEN (W 2) <

∞ for all N . Then we can apply a weak law of large numbers for triangular arrays to W to say
that

plim N−1(PJ∗Gy)′ϵ = E((PJ∗Gy)′ϵ)i) = 0.

Therefore our estimator is both unbiased and consistent.
Next, we need to characterise the asymptotic distribution of the estimator.

√
N(θ̂ − θ) = (I + (N−1z′PJ∗z)

−1N−1z′PJ∗zB)
−1(N−1z′PJ∗z)

−1(
1√
N

PJ∗z)
′ϵ)

Again, applying Slutsky’s lemma, all terms on the right hand side except

1√
N

(PJ∗z)
′ϵ

will converge to finite limits. To characterise the distribution of this term, we need to apply
a law of large numbers for triangular arrays. We use the central limit theorem for triangular
arrays from (Kelejian and Prucha, 1998).

Theorem 3 (CLT for triangular arrays). Let ϵ, PJ∗Hy be triangular arrays of identically
distributed random variables with finite second moments. Denote Var(ϵ) = σ2. Assume that
plim N−1(PJ∗Hy)′PJ∗Hy = QHJ is finite and nonsingular. Then

1√
N

(PJ∗z)
′ϵ

d−→ N(0, σ2QHJ).

Applying this result, we have that

1√
N

(PJ∗z)
′ϵ

d−→ N(0, σ2QHJ).

Therefore, by Slutky’s lemma

√
N(θ̂ − θ)

d−→ N(0, σ2(I +Q−1
ZZQZB)

−1Q−1
ZZQHJ((I +Q−1

ZZQZB)
−1Q−1

ZZ)
′).

A8 Additional simulations

A8.1 Real-data simulation

We further test the performance of our estimator on a real network - the co-author network of
economists from Ductor et al. (2014). This is the complete network of co-authorships between
economists on papers published in journals in the EconLit database. As in Ductor et al. (2014),
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we use co-authorships over a three-year window – here 1996-1998 – to account for lags in publi-
cations. This gives us across 44, 776 economists and 57, 407 links between them. Note that the
network is very sparse. The mean degree is 1.28. The 95th percentile of the degree distribution
is 4 collaborations.

We simulate the effect of a treatment across this network as above. In each simulation, each
economist draws a binary treatment xi ∼ Bernoulli(0.3). Outcomes are drawn from (2) with
β = 0.8, ϵi ∼ N(0, 1).

We sample the network using a fixed choice design with thresholds k ∈ {1, 2, 3, 4, 5, 6}. Next,
we sample based on groups. We then construct spillover estimates using the sampled network,
and using our debiased estimator under assumption 4.a.

Number sampled OLS η η̂

1 1.02 0.799 0.798
2 0.902 0.800 0.799
3 0.871 0.800 0.800
4 0.847 0.799 0.799
5 0.834 0.800 0.800
6 0.823 0.799 0.799

Figure A8.1: Mean spillover estimates using
fixed choice design, by threshold

Figure A8.2: Distribution of spillover esti-
mates using fixed choice design with thresh-
old of 3

As in our simulated networks, we see that linear regression of outcomes on sampled spillovers
leads to biased estimates. The bias is relatively small because the true network is so sparse.
With a threshold of 3, 90% of individuals maintain all of their true links. Our error corrected
estimate performs still perform very well.

A8.2 Simulations for nonlinear social network models

We test the performance of our estimator in Section 3 in finite sample. As in the experiments
in the main text, we simulate N = 1000 individuals who draw a true degree di ∼ U(0, 10) and
are then connected with others uniformly at random from the population.

Our data generating process is

y = λGy + xβ + ϵ

with λ = 0.3, β = 0.8. In all cases, ϵ ∼ N(0, 1). We run 1000 simulations per estimator,
starting each set with the same random seed. Bias corrected estimators are constructed using
the mean missing degree dB under Assumption 5 for cases 1 and 2 in Section 5.
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Figure A8.3: Spillover estimates from nonlinear social network models

(a) Case 1 (b) Case 2

Notes: Red line denotes true parameter value. Sampled network in left panel generated by sampling 5

links per agent uniformly at random from their true links. Sampled network in right panel generated
by sampling 10− di additional links per agent i uniformly at random from the population.

As for linear models, we see that naive two-stage least squares estimators using the sampled
network are heavily biased. Our bias-corrected estimators recover the true spillover effect well
in finite samples.

A8.3 Copula-based estimator

We assess the performance of an example of this estimator in section 4 in finite sample. As
above, we simulate N = 1000 individuals who draw a true degree di ∼ U(0, 10) and are then
connected with others uniformly at random from the population.

Each agent draws continuous treatment from the marginal distribution Xi ∼ N(5, 1). Marginal
distributions of treatment and degree are coupled through a bivariate Gumbel copula

C(F−1
X (x), F−1

D (d); θ) = exp(−((− lnF−1
X (x))θ + (− lnF−1

D (d))θ)
1
θ )

where θ ∈ [1,∞] controls the degree of dependence between treatment and degree. We set
θ = 10. The left panel of figure A8.4 plots an example joint distribution. Higher treatment
nodes have higher degree. Researchers sample networks using a fixed choice design sampling
m = 5 links per node as in the National Longitudinal Survey of Adolescent Health Data Set.
Then ∑

j

E(bij(xi)|xj)xj =
∑
j

(E(g∗ij |xi)−m)x̄.

We estimate spillovers using the two-step estimator we describe above. In the first step, we
estimate the dependence between treatment and degree by fitting a Gumbel copula by maximum
likelihood using only the observations where we correctly sample the network. In the second
stage, we then construct a spillover estimate β̂, constructing BX by sampling from the copula.

Our two-step estimator performs well even though the ordinary least-squares estimator does
not. The mean debiased estimate of 0.813 is close to the true spillover value.
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Figure A8.4: Spillover estimates when degree depends on treatment

(a) Joint distribution of degree and treatment (b) Spillover estimates

Notes: Red line denotes true parameter value of 0.8. Data is simulated from a linear model on the
true network with N = 1000. Treatment drawn from marginal N(5, 1), and degree distributed U(0, 10),
coupled by a Gumbel copula with θ = 10. Sampled network generated by sampling 5 links per agent
uniformly at random from their true links, or all if degree is less than 5.

A9 Peer effects from classrooms

Carrell et al. (2013) estimate the effect of the share of (randomly assigned) high and low ability
peers on student GPA at the United States Air Force Academy assuming that all individuals
within a peer group (squadron) influence each other equally.

Specifically, each student i is placed within one squadron Si with 30 other individuals. Denote
whether a student has high, middle, or low predicted GPA with the dummies {DH , DM , DL},
whether they have a high SAT-Verbal score with the dummy xH , and whether they have a low
SAT-Verbal score with the dummy xL.

The sampled network of peers G is a binary network such that Gij = 1 if and only if i

and j are in the same squadron. Treatments are the high-ability and low-ability peers in the
same squadron 1(Si = Sj)x

H
j , 1(Si = Sj)x

L
j . Students are assigned randomly to squadrons.

Therefore sampled spillovers from high-low SAT-Verbal peers are

Sk
i =

1

|Si|−1

∑
j

Gij1Si=Sjx
k
j

for k ∈ {H,L} where normalising by 1
|Si|−1 give the share of that type of peer in the squadron.

Carrell et al. (2013) then estimate spillover coefficients for each predicted-GPA group using
the reduced-form regression

GPAi = Wγ +
∑
l

∑
k

DlS
kβkl + ϵi.

They use the results to run a treatment where they assign new students to squadrons to
maximise the GPA of students with the lowest GPA. Using estimated β̂OLS

HL , β̂OLS
LL = 0.464, 0.065

predicts a positive average treatment effect

∆SH × βLH +∆SL × βLH = 0.0464 + 0.006600

= 0.053 > 0
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on the students with the lowest GPA, where ∆SH = 0.1,∆SL = 0.1015. Surprisingly, they
instead find a negative treatment effect.

One reason reassignment might have less positive effects than expected is that different
types interact with different intensities. For example, students may interact less intensely with
students with low SAT verbal scores than implied by their shares in the squadron, and more
intensely with students with high SAT verbal scores than their shares in the squadron.

Jackson et al. (2022) survey the network of most important study partnerships between
Caltech students, and compute shares of study partners across the GPA distribution. There
are 36.28% more study partnerships between students above and below the median on the GPA
distribution than implied by their shares in the population. To investigate how sampling of the
initial network might affect the Carrell et al. (2013) results, take this as an initial prediction for
missing interactions between low predicted GPA and high SAT verbal students.25 Then, taking
values from Tables 1 and 2 in Carrell et al. (2013) gives an estimate of βLH of

β̂ =
0.464

1 + S̄H2×0.3628
Var(SH)

= 0.07709.

Then, the predicted treatment effect would be

0.007709 + 0.006600 = 0.01431,

a null effect given the forecast standard errors reported in Table 4.
In the paper, they find a negative treatment effect. So, sampling bias cannot entirely ra-

tionalise the results. But, it goes a way to explaining how the relatively small amount of
endogeneous network adjustment reported in response to treatment could explain the negative
result.

A9.1 Calculations from Caltech cohort study

From Jackson et al. (2022), there are an average of 3.5 study partners for male students, and
3.3 for female students. 65.23% of the cohort are male, and 34.77% are female. So, the average
number of study partners is

3.5× 0.6523 + 3.3× 0.3477 = 3.43.

893 students answered the survey in 2014. Therefore

893× 3.43 = 3063

25Note that Carrell et al. (2013) define high, medium, and low in terms of thirds of the distribution.
So, these are not directly comparable. Instead, it can be viewed as a best approximation to the level of
sampling bias.
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study links exist between students. The study network is a simple network. Therefore,
there are

(
893
2

)
= 398278 possible links. The number of links present per 1000 possible links is

therefore

3063

398278
× 1000 = 7.69.

In Table 4, Jackson et al. (2022) report that there are 2.79 fewer links per 1000 potential
links between pairs of students that both have above/below median GPA than pairs of students
with GPA on opposite sides of the median. As there are 7.69 links on average, if links were
drawn uniformly at random across students there would be

7.69

2
= 3.845

links within and across the GPA categories. The results imply that instead there are

3.845− 2.79

2
= 2.45

links within the GPA categories, and

3.845 +
2.79

2
= 5.24

links across the GPA categories. This is

5.24− 3.845

3.845
× 100 = 36.28%

more than implied by the shares in the population.
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